Tibi gratias ago pro visitare nature.com. Et pasco versio vos es usura habet limited css firmamentum. Nam optimum experientia, nos suadeo ut vos utor an updated pasco (vel inactivare compatibility modus in Penitus Rimor). In interim, ut continua firmamentum, nos reddere locum sine styles et JavaScript.
4H-sic fuerit commercialized ut materia ad potentia semiconductor cogitationes. Tamen, in longa-term reliability de 4h-sic cogitationes est impedimentum ad late applicationem et maxime momenti reliability forsit de 4h, sic cogitationes est bipolar degradation. Hoc Degradation causatur per unum Shockleking culpa (1SSF) propagationem basalis planum Delocations in 4h-sic crystallis. Hic nos proponimus modum pro suppresso 1SSF expansion per implantationem protons in 4h-sic epitaxial wafers. Pin Diodes fabricata in wafers cum Proton implantatio ostendit idem current, voltage characteres sicut Diodes sine Proton implantationem. In Contra, in 1SSF expansion efficaciter suppressa in protón-implantata ACUS diode. Ut, quod implantatio de protons in 4H-sic epitaxial wafers est effective modum pro suppressis bipolar degradation of 4h, sic potentia semiconductor cogitationes dum maintaining fabrica perficientur. Hoc eventus confert ad progressionem altus reliable 4h-sic cogitationes.
Silicon carbide (sic) est late agnita quasi semiconductor materiam ad altus-potentia, summus frequency semiconductor cogitationes, qui non agunt in dura environsment1. Sunt plures sic polytypes, in quibus 4h-sic habet optimum semiconductor fabrica physica proprietatibus ut excelsum electronic mobilitatem et fortis naufragii electrica Field2. 4H-sic wafers cum diameter VI pollices sunt currently commercialized et propter molem productionem potentia semiconductor devices3. Traction systems ad electrica vehicles et impedimenta sunt fabricata per 4H-sic4.5 potentia semiconductor cogitationes. Autem, 4H-sic cogitationes usque patiuntur a diu-term reliability exitibus ut dielectric naufragii vel brevis-circuitu reliability, 6,7 de qua unus ex maxime momenti reliability exitibus est bipolar Degradation2,8,9,10,11. Hoc bipolar degradationem inventa super XX annos et iam diu fuit quaestio in sic fabrica fabrica.
Bipolar degradation est per unum shocklek Stack defectum (1SSF) in 4H-sic crystallis cum basalibus planum Documents (BPDs) propagare per recombination enhance peccetur Labit (Redg) 12,13,14,16,17,17,19. Igitur si BPD expansion est supprimitur ad 1SSF, 4h-sic potentia cogitationes potest fieri fictum sine bipolar degradation. Plures modi sunt relatum ad supprimere BPD propagationem, ut BPD ad filo ore peccetur (Marcus) transformatio 20,21,223,24. In tardus sic epitaxial wafers, in BPD est maxime praesens in subiecto et non in epitaxial layer debitum ad conversionem BPD ad TED in initial scaena epitaxial incrementum. Ideo reliquae quaestio bipolar degradation est distributio BPD in subiecto 25,26,27. In insertionem a "compositum firmfroging accumsan" inter PERFLUO accumsan et subiectum est propositus est efficax modum pro suppresso BPD expansion in substratum, in epitaxial ex electronic, par. Reducing numerum electronic-foramine pairs reducit ad driving vis REDG ad BPD in subiecto, ita composita supplemento iacuit potest supprimere bipolar degradation. Notandum est quod insertionem de accumsan entails additional costs in productione lagana et sine insertione de iacuit difficile ad redigendum numerum electronicam-foraminis binos per moderantum tantum imperium in carrier vitae. Ideo non est adhuc fortis opus ut develop aliis suppressionem modi ad consequi meliorem statera inter fabrica vestibulum sumptus et cedat.
Quia extensio de BPD ad 1SSF postulat motus ex parte Delocations (PDS), Pinning PD est promissum ad accedere ad inhibit bipolar degradation. Licet PD finning per metallum impudicities nuntiavit, FPDs in 4H-sic in spelunca sunt sita ad spatium magis quam V μm de superficies epitaxial layer. Praeterea, cum diffusione coefficienti ullo metallum in sic est valde parvum, difficile ad metallum impudicitiis diffundere in substratum. Debitum ad relative magna nuclei massa metallis, Ion implantatio metallorum est etiam difficile. In contrarium, in casu de hydrogenii, levissimum elementum, ions (protons) potest implantari in 4h-sic ad altitudinem plus quam X μm usura mev-genus accelerator. Igitur si Proton implantatio implantatio PD Pinning, tunc potest esse ad supprimere BPD propagationem in subiecto. Tamen, Proton implantatio potest damnum 4h-sic et effectus in reducta fabrica perficietur Efferentiam 3.
To overcome device degradation due to proton implantation, high-temperature annealing is used to repair damage, similar to the annealing method commonly used after acceptor ion implantation in device processing1, 40, 41, 42. Although secondary ion mass spectrometry (SIMS)43 has reported hydrogen diffusion due to high-temperature annealing, it is possible that only the density of hydrogen atoms near the FD non satis est deprehendere in Pinning de PR usibus sims. Ideo in hoc studio, ut implantari protons in 4h-sic epitaxial lagana ante fabrica fabricatione processus, inter altum temperatus annales. Nos usus ACUS Diodes ut experimentalem fabrica structurae et fabricata eos in Proton-implantata 4h-sic epitaxial wafers. Tum observari Volt ampere characteres studere degradation of fabrica perficientur propter protón iniectio. Deinde, ut observari expansion 1SSF in Electrumininescence (El) imagines post applicando electrica voltage ad pin diode. Denique confirmavimus effectum proton iniectio in suppressionem 1SSF expansion.
In fig. Figura I ostendit current, voltage characteres (cvcs) de ACiodes ad locus temperatus in regiones et sine Proton implantatio prior ad pulsed current. ACUS Diodes cum Proton iniectio Show rectification Charles similis Diodes sine Proton iniectio, etiamsi in IV Characteres sunt participatur inter Diodes. Ad indicant differentia inter infusionem condiciones, cogitaverunt et voltage frequency ad deinceps current densitate 2.5 a / CM2 (correspondentes ad C ma), ut a normalis distribution est etiam per lineam. linea. Sicut potest videri a summis curvarum, in on-resistentia paulo crescit ad Proton gustatu MXIV et MXVI cm-II, dum pin diode cum protón dose of MXII cm-II ostendit fere idem quod non Proton implantationem. Nos quoque fiunt Proton implantatio post Fabricem PIN Diodes quod non exhibent uniformis electropuminesceninescence debitum ad damnum fecit per Proton implantationem, ut ostensum est in Figura S1, sicut in previous Studies38,39. Igitur annealing ad MDC ° C post implantationem ex al ions est a necessaria processus ad fabricari cogitationes ad eu in al acceptor, quod potest reparare damnum fecit per protóntum et non-implantata Proton et dios. Et vicissim current frequency at -5 V est etiam presented in Figura S2, ibi est significant differentia inter Diodes et sine protón iniectio.
Volt, ampere characteres de ACIENS et sine infusum protons ad locus temperatus. Et legenda indicat ad dose of protons.
Voltage frequency at Direct Current 2.5 A / CM2 quia ACIODES cum infusum et non-infusum protons. Dormi Distribution linea correspondet.
In fig. III ostendit an elementum a pin diode cum current density XXV a / cm2 post voltage. Antequam applicando pulsed vena onus, in tenebris regiones de diode non serventur, ut ostensum est in Figura III. C2. Tamen, ut in fig. 3a, in pin diode sine protón implantatio, complures tenebris alba regiones cum lux marginibus observata post applicando an electrica voltage. Tales virga informibus tenebris regiones sunt in el imaginibus 1ssf extendens a BPD in subiecto. Instead, quidam extenditur stacking culpae sunt in ACUS Diodes cum implantata protons, ut ostensum est in Fig. 3b-d. Using X-ray topography, we confirmed the presence of PRs that can move from the BPD to the substrate at the periphery of the contacts in the PiN diode without proton injection (Fig. 4: this image without removing the top electrode (photographed, PR under the electrodes is not visible). Therefore, the dark area in the EL image corresponds to an extended 1SSF BPD in the substrate. EL images of other loaded PiN Diodes sunt ostensum est in figuras I et II. Videos S3-S6 cum et non extensa tenebris areas (Tempus-various elementa in ACUS Diodes sine Proton iniectio et implantatum MXIV cm-II) sunt etiam ostensum est in MXL.
EL images of PiN diodes at 25 A/cm2 after 2 hours of electrical stress (a) without proton implantation and with implanted doses of (b) 1012 cm-2, (c) 1014 cm-2 and (d) 1016 cm-2 protons .
Nos calculata densitate expanded 1SSF per calculandum tenebris areas cum clara marginibus in tres ACUS Diodes pro se conditione, ut ostensum est in Figura V. Densitas et ad dose MXII cm-II, densitate et densis minorem, quam in non-dose est significantly minus densitate dose est axe.
Auxit densitates SF ACIERA cum et sine Proton implantatio post loading cum pulsed current (inter se status includitur tres loaded Diodes).
Buranaque in carrier vitae quoque afficit expansion suppressio, et protón infusum reduces in carrier vitae lifetime32,36. Nobis observavimus carrier saecula in epitaxial layer LX μm densissima cum infusum protons of MXIV cm-II. Ex initial carrier vita, quamquam implantare reduces valorem ad ~ X%, subsequent annexa restituit eam ad ~ L%, ut exhibetur in Fig. S7. Ideo in carrier vitae, reducitur ex Proton implantatio, restituit a summus temperatus annales. Licet a L% reductionem in carrier vitae etiam suppreses propagationem stacking vitiis, in I-characteres, quae sunt typice dependens in carrier vitae, ostendunt solum minor differentias inter infusum et non-diosque differentias inter infusum et non-diosque differentias. Ideo credimus quod PD Anchoring ludit munus inhibentes 1SSF expansion.
Licet Sims non deprehendere hydrogenii post annales ad MDC ° C, ut nuntiavit in previous studiis, observari effectum Proton implantationem in Suscipimus 1SSF, ut ostensum est in I × MXVI CM-III) seu Point Defectioni implantationem. Notandum quod nos non confirmavit augmentum in on-re publica resistentia ex elongatione 1SSF postquam surge current onus. Hoc potest esse ex imperfecta ohmic contactus facta usura nostrum processus, quod erit eliminated in proximo futurum.
In conclusione, ut developed in modum extendendo ad 1SSF in 4H-sic Pin Diodes usura Proton implantatio prior ad fabrica Pickacturing. Deterioracionem ad I-V proprium in Proton implantatio est parvum, praesertim ad protón dose of MXII cm-II, sed effectus suppressionem in 1SSF expansion est significant. Licet in hac studio X fictum μm densae pin Diodes cum Proton implantatio ad profundum X μm, quod adhuc possibile est adhuc magis optimize implantationem conditionibus et applicare eos ad fabricate aliis 4h, sic et applicare eos ad fabricate alias 4h, sic et applicare ad fabricate 4h, sic et applicare ad fabricate 4h, sic et applicare ad fabrica 4h. Additional costs pro fabrica fabricatione in Proton implantatio debet considerari, sed non erit similis illis ad aluminium ion implantationem, quae est pelagus fabricatione processus ad 4h-sic potentia cogitationes. Ut, Proton implantatio prior ad fabrica processus est potentiale modum pro fabrici 4h-sic bipolar potentia cogitationes absque degeneratione.
A IV-inch n-type 4h-sic laganum cum epitaxial layer crassitudine X μm et donator doping concentration of I × MXVI cm III-III usus est sicut sample. Ante dispensando in fabrica, H + ions sunt insita in laminam cum acceleratione industria 0.95 MEV ad locus temperatus ad profundum circiter X μm ad normalis angulus ad laminam superficiem. Per Proton implantatio, in larva in laminam usus est, et laminam habuit sectiones sine et cum protón dose of MXII, MXIV, seu MXVI cm-II. Deinde, al ions cum Proton doses MXX et MXVII cm-III implantata super totius laganum ad altitudinem 0-0.2 μm et 0.2-0.5 μm ex superficie, sequitur ad MDC ° C ad formare carbonis cap ad formare ap instrue. -Type. Postea a tergo latus ni contactus deposita in subiecto parte, cum 2.0 mm × 2.0 mm pectine-informibus Ti / alte latus deposita in epitaxial latus. Denique contactus annealing est peragitur ad temperatus de DCC ° c. Post cutting in laganum in eu, non feci accentus characterization et application.
Et ego V characteres de fabricato ACUS Diodes sunt observata usura an HP4155B Semiconductor parametri Analyser. Sicut in electrica accentus, a X-millisecond pulsed current de 212.5 a / cm2 est introducta pro II horas ad frequency of X pulsus / sec. Cum enim elegit in inferioribus current density et frequency, non observe 1SSF expansion etiam in pin diode sine protón iniectio. Per applicari electrica voltage, temperatus de pin diode est circa LXX ° C sine intentionalibus calefacit, ut ostensum est in figura S8. Electreoescentcent imagines sunt adeptus ante et post electrica accentus ad current densitate de XXV a / cm2. Synchrotron reflection pascua incidentiæ X-ray topography per a monochromatic X-radius trabem (λ = 0.15 m) ad Aichi synchrotron radialis centrum, in AG vector in Bl8s2 est -1-128 aut 11-28 (videatur Ref. XLIV enim details). ).
In voltage frequency ad deinceps current densitate 2.5 a / cm2 extrahitur cum intervallo 0,5 V in Fig. II Secundum CVC cuiusque statu pin diode. Ex medium valorem de accentus et vexillum digredior Σ de accentus, ut insidias a normalis distribution curvae in forma quadrata linea in Figura II usura haec aequatione:
Cicero, MR & Fahrner, RE review on materiae, microrsors, systems et cogitationes ad altus-temperatus et dura-environment applications. Cicero, MR & Fahrner, RE review on materiae, microrsors, systems et cogitationes ad altus-temperatus et dura-environment applications.Cicero, Mr et Farner, Wr Overview of Material, Microrsors, Systems et cogitationes pro applications in altum temperatus et dura ambitus. Cicero, MR & Fahrner, WR 对用于高温和恶劣环境应用的材料, 微传感器, 系统和设备的评论. Cicero, Mr & Fahrner, VVR recensionem de materiae, micrisensors, systems et cogitationes ad altum temperatus et adversa environmental applications.Cicero, Mr et Farner, wr Overview of materiae, microrsors, systems et cogitationes ad applications ad altum temperaturis et dura conditionibus.IEEE trans. Industrial Electronics. XLVIII, 249-257 (MMI).
Kimoto, C. & Cooper, Ja Tractatus De Silicon Carbide Technology Disputatio De Silicon Carbide Technology, incrementum, characterization, cogitationes et applications Vol. Kimoto, C. & Cooper, Ja Tractatus De Silicon Carbide Technology Disputatio De Silicon Carbide Technology, incrementum, characterization, cogitationes et applications Vol.Kimoto, T. et Cooper, Ja Basics of Silicon Carbide Technology Basics of Silicon Carbide Technology, incrementum, characteres, cogitationes et applications Vol. Kimoto, C. & Cooper, JA 碳化硅技术基础碳化硅技术基础: 增长, 表征, 设备和应用卷. Kimoto, C. & Cooper, JA Carbon 化 Silicon Technology Base Carbon 化 Silicon Technology Base: Descriptio, Apparatu et Application volumine.Kimoto, T. et Cooper, J. Basics of Silicon Carbide Technology Basics of Silicon Carbide Technology, incrementum, characteres, apparatu et applications Vol.CCLII (Wiley Singapore Pte Ltd, MMXIV).
Veliadis, V. Magna scale commercialization de SIC: Quid et obstacula ad vincere. Mater alma. in scientia. MLXII, 125-130 (MMXII).
Broughton, J., Smet, V., tumla, RR & Joshi, YK recensionem scelerisque packaging technologiae pro automotive potentia electronics ad tractu proposita. Broughton, J., Smet, V., tumla, RR & Joshi, YK recensionem scelerisque packaging technologiae pro automotive potentia electronics ad tractu proposita.Broughton, J., Smet, V., tumla, RR Joshi, YK Overview of Thermal Packaging Technologies pro Automotive Power electronics ad tractu proposita. Brokton, J., Smet, V., tumla, RR & Joshi, k 用于牵引目的的汽车电力电子热封装技术的回顾. Brokton, J., Smet, V., tumla, RR & Joshi, ykBrokton, J., Smet, V., tumla, RR et Joshi, YK Overview of Thermal Packaging technology pro automotive electronics ad tractu proposita.J. Electron. Package. Missa. ASME CXL, 1-11 (MMXVIII).
Sato, K., Kato, H. & Fukushima, T. Development of SIC applicari tractus ratio pro proximo-generation Shinkansen summus celeritas impedimenta. Sato, K., Kato, H. & Fukushima, T. Development of SIC applicari tractus ratio pro proximo-generation Shinkansen summus celeritas impedimenta.Sato K., Kato H. et Fukushima T. Development of an applicari Sic tractus ratio pro altera generation summus celeritas Shinkansen impedimenta.Sato K., Kato H. et Fukushima T. Truction Ratio Development pro Sic applications pro altera generation summus celeritas Shinkansen impedimenta. Appendix iej J. Ind. IX, 453-459 (MMXX).
Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. Challenges ut animadverto valde fideles sic potentia cogitationes: ex current status et exitibus de sicca. Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. Challenges ut animadverto valde fideles sic potentia cogitationes: ex current status et exitibus de sicca.Senzaki, J., Hayashi, S., Yonezawa, Y. et Okumura, H. Problems in implementation of altus reliable sic potentia cogitationes: incipiens a current statu et quaestionem de lagestre sic. Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. 实现高可靠性 Sic 功率器件的挑战: 从 sic 晶圆的现状和问题来看. Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. de provocatione Achieving princeps reliability in sic potentia cogitationes: de Sic 晶圆的电视和问题设计.Senzaki J, Hayashi S, Yonezawa Y. et Okumura H. challenges in progressionem summus reliability potentia cogitationes fundatur in Silicon carbide, a review of status et problems consociata cum Silicon Carbide Wafers.In MMXVIII IEEE International Symposium in Reliability Physicorum (IRPS). (Senzaki, J. et al. Eds.) 3b.3-1-3b.3-6 (IEE, MMXVIII).
Kim, D. & Sung, W. Melius Short-circuitu Ruggedeness ad 1.2kv 4h-sic Mosfet per altum P-bene implemented per Channeling implantationem. Kim, D. & Sung, W. Melius Short-circuitu Ruggedeness ad 1.2kv 4h-sic Mosfet per altum P-bene implemented per Channeling implantationem.Kim, D. et cantu, V. Melius Short-Circuit immunitas ad 1.2 KV 4H-sic Mosfet per altum P-bene implemented per alveo implantationem. Kim, D. & Sung, W. 使用通过沟道注入实现的深 p 阱提高了 1.2kv 4H-sic Mosfet 的短路耐用性. Kim, D. Canturiae, W. P 阱提高了 1.2kv 4H-sic MosfetKim, D. et cantu, V. Melius Short-Circuit Tolerantia de 1.2 KV 4H-sic Mosfets per altum P p-Wells per alveo implantationem.IEEE electronic cogitationes litt. XLII, 1822-1825 (MMXXI).
Skowronski M. et al. Recombination-amplificata motus defectus in deinceps-biased 4H-sic PN Diodes. J. Application. Physicis. XCII, 4699-4704 (MMII).
Ha, S., Meszkowski, P., SkowRonski, M. & Rowland, LB Conversio Conversion in 4H Silicon carbide epitaxy. Ha, S., Meszkowski, P., SkowRonski, M. & Rowland, LB Conversio Conversion in 4H Silicon carbide epitaxy.Ha S., Meszkowski P., SkowRonski M. et Rowland LB Munus transformatio durante 4h Silicon carbide epitaxy. Ha, S., Meszkowski, P., SkowRonski, M. & Rowland, LB 4H 碳化硅外延中的位错转换. Ha, S., Meszkowski, P., SkowRonski, M. & Rowland, LB 4H Ha, S., Meszkowski, P., SkowRonski, M. & Rowland, LBDebitur transitus 4h in Silicon carbide epitaxy.J. Crystal. CCXLIV incrementum, 257-266 (MMII).
SkowRonski, M. & Ha, S. Degradation Hexagonal Silicon-Carbide-fundatur Bipolar cogitationes. SkowRonski, M. & Ha, S. Degradation Hexagonal Silicon-Carbide-fundatur Bipolar cogitationes.SkowRonski M. et Ha S. Degradation Hexagonal Bipolar devices Ex Silicon Carbide. SkowRonski, M. & Ha, S. 六方碳化硅基双极器件的降解. SkowRonski M. & Ha S.SkowRonski M. et Ha S. Degradation Hexagonal Bipolar devices Ex Silicon Carbide.J. Application. Physicis XCIX, (XI) CI (MMVI).
Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H.Agarwal A., Fatima H., Heini S. et Ryu S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H.Agarwal A., Fatima H., Heini S. et Ryu S.-H.Novum degradation mechanism ad altus-voltage sic potentia Mosfets. IEEE electronic cogitationes litt. XXVIII, 587-589 (MMVII).
Caldwell, JD, Stahlbush, Re, Anconae, MG, Glembocki, OJ & Hobart, KD in driving vis ad recombination-adductus stacking culpa in 4h-sic. Caldwell, JD, Stahlbush, Re, Anconae, MG, Glembocki, OJ & Hobart, KD in driving vis ad recombination-adductus stacking culpa in 4h-sic.Caldwell, JD, StalBush, Re, Anconae, MG, GLambeki, OJ et Hobart, KD in driving vis de recombination-adductus stacking culpa in 4h-sic. Caldwell, JD, Stahlbush, Re, Anconae, MG, Glembacki, OJ & Hobart, KD 关于 4H-sic 中复合引起的层错运动的驱动力. Caldwell, JD, Stahlbush, Re, Anconae, MG, Glembocki, OJ & Hobart, KDCaldwell, JD, StalBush, Re, Anconae, MG, GLambeki, OJ, et Hobart, KD, in driving vis recombination-inductus stacking culpa in 4h-sic.J. Application. Physicis. CVIII, (XLIV) DIII (MMX).
IIJima, A. & Kimoto, T. Electronic Energy Model enim Single Sockley Stacking Culpa formation in 4H-sic crystallis. IIJima, A. & Kimoto, T. Electronic Energy Model enim Single Sockley Stacking Culpa formation in 4H-sic crystallis.IIjima, A. et Kimoto, T. Electron-navitas exemplar formationis unius defectus shockley stipare in 4h-sic crystallis. IIJima, A. & Kimoto, T. 4H-sic 晶体中单 Shockley 堆垛层错形成的电子能量模型. IIjima, A. & Kimoto, T. Electronic Energy exemplar de uno shockley stacking culpa formationem in 4h-sic crystallum.IIjima, A. et Kimoto, T. Electron-navitas exemplar formationis unius defectum shockley stipare in 4h-sic crystallis.J. Application. Physicis CXXVI, (CV) DCCIII (MMXIX).
IIJima, A. & Kimoto, T. Aestimation of Critica Condition ad expansion / contractione unius shockle stacking in 4h-sic pax dios. IIJima, A. & Kimoto, T. Aestimation of Critica Condition ad expansion / contractione unius shockle stacking in 4h-sic pax dios.IIjima, A. et Kimoto, T. aestimationem de discrimine rei publicae pro expansion / compressionem unius shockley stipare defectus in 4h-sic pin-Diodes. IIjima, A. & Kimoto, T. 估计 4h-sic pin 二极管中单个 Shockley 堆垛层错膨胀 / 收缩的临界条件. IIjima, A. & Kimoto, T. Aestimation of Single Shockle Stacking Layer expansion / Contractio Conditions in 4H-Sic Pin Diodes.IIjima, A. et Kimoto, T. aestimationem de discrimine condiciones ad expansionem / compressionem unius defectus stipare shockley in 4h-sic pin-Diodes.Application Physicis Wright. CXVI, (XCII) CV (MMXX).
Mannen, Y., Shimada, K., Asada, K. & Ohtani, N. Quantum bene actio exemplar ad formationem unius shockle stacking in a 4h-sic crystallum sub Non-aequilibrium conditionibus. Mannen, Y., Shimada, K., Asada, K. & Ohtani, N. Quantum bene actio exemplar ad formationem unius shockle stacking in a 4h-sic crystallum sub Non-aequilibrium conditionibus.Mannen Y., Shimada K., Asada K. et Otani N. Quantum bene exemplar ad formationem unum shockle stacking culpa in 4h-sic crystallum sub nonequibrium conditionibus.Mannen Y., Shimada K., Asada K. et Otani N. Quantum bene commercium exemplar ad formationem unius shockle stacking in 4h-sic crystallis sub nonequibrinus conditionibus. J. Application. Physicis. CXXV, (LXXXV) DCCV (MMXIX).
Galeckas, A., Linnrum, J. & Pirouz, P. Recombination-adductus Stacking vitiis: quod pro generali mechanism in hexagonal sic. Galeckas, A., Linnrum, J. & Pirouz, P. Recombination-adductus Stacking vitiis: quod pro generali mechanism in hexagonal sic.Galeckas, A., Linnrum, J. et Pirouz, P. Recombin-adductus sarcina defectus: quod commune mechanism in HEXAGONAL SIC. Galeckas, A., Linnrum, J. & Pirouz, P. 复合诱导的堆垛层错: 六方 sic 中一般机制的证据. Galeckas, A., Linnrum, J. & Pirouz, P. quod pro Generalis mechanism of compositorum induction stacking iacuit: 六方 sic.Galeckas, A., Linnrum, J. et Pirouz, P. Recombin-adductus sarcina defectus: quod commune mechanism in HEXAGONAL SIC.Physicorum Pastor Cicero. XCVI, (XXI) DII (MMVI).
Ishikawa, Y., Sudo, M., Yao, Y.-Z., Sugawara, Y. & Kato, M. Expansion de uno shockley stacking culpa in 4h-sic (XI II €) epitaxial per electrony trabem irradiationem.Ishikawa, Y., M. Sudo, Y.-Z trabem irradiatio.Ishikawa, Y., Sudo M., Y.-z Psychology.Box, ю., М. Судо, Y.-Z Cham., J. Cham., CXXIII, (CCXXV) CI (MMXVIII).
Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. Observatio Portitorium Recomocations in 4H-sic. Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. Observatio Portitorium Recomocations in 4H-sic.Kato M., Katahira S., itikawa Y., Harada S. et Kimoto T. observationis de carrier recombination in Single Shockle stipare defectus et partialium in 4h-sic. Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. 单 Shockley 堆垛层错和 4H-sic 部分位错中载流子复合的观察. Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. 单 shockle stacking stacking 和 4h-sic partialis 位错中载流子去生的可以.Kato M., Katahira S., itikawa Y., Harada S. et Kimoto T. observationis de carrier recombination in Single Shockle stipare defectus et partialium in 4h-sic.J. Application. Physicis CXXIV, (XCV) DCCII (MMXVIII).
Kimoto, C. & Watanabe, H. Defectus Engineering in SIC technology ad altus-voltage potentia cogitationes. Kimoto, C. & Watanabe, H. Defectus Engineering in SIC technology ad altus-voltage potentia cogitationes.Kimoto, T. et Watanabe, H. progressionem defectuum in sic technology in altus-voltage potentia cogitationes. Kimoto, T. & Watanabe, H. 用于高压功率器件的 sic 技术中的缺陷工程. Kimoto, C. & Watanabe, H. Defectus Engineering in SIC technology ad altus-voltage potentia cogitationes.Kimoto, T. et Watanabe, H. progressionem defectuum in sic technology in altus-voltage potentia cogitationes.Applicationem Physicis Express XIII, (CXX) CI (MMXX).
Zhang, Z. & Sudarshan, TS basalis planum peccetur, liberum epitaxy de Silicon carbide. Zhang, Z. & Sudarshan, TS basalis planum peccetur, liberum epitaxy de Silicon carbide.Zhang Z. et Sudarshan Ts peccetur-liberum epitaxy de Silicon carbide in basali planum. Zhang, Z. & Sudarshan, T 碳化硅基面无位错外延. Zhang, Z. & Sudarshan, TZhang Z. et Sudarshan Ts peccetur-liberum epitaxy de Silicon carbide basalis plana.dicitur. Physicis. Wright. LXXXVII, (CLI) CMXIII (MMV).
Zhang, Z., Moulton, E. & Sudarshan, TS mechanism of eliminating basalis planum Delocations in Sic tenuis films per epitaxy in an et subiecto. Zhang, Z., Moulton, E. & Sudarshan, TS mechanism of eliminating basalis planum Delocations in Sic tenuis films per epitaxy in an et subiecto.Zhang Z., Moulton E. et Sudarshan Ts mechanism de eliminanda basi plano Ducations in Sic tenuis films per epitaxy in an adipiscing subiecti. Zhang, Z., Moulton, E. & Sudarshan, Ts 通过在蚀刻衬底上外延消除 sic 薄膜中基面位错的机制. Zhang, Z., Moulton, E. Sudarshan, TS mechanism of eliminanda sic tenues film per etching subiectum.Zhang Z., Moulton E. et Sudarshan Ts mechanism de eliminanda basi planum CONVOLSUM in Sic tenuis films per epitaxy in Sale Subs.Application Physicis Wright. LXXXIX, (LXXXI) CMX (MMVI).
Shtalbush Re et al. Ad incrementum intermittit ducit ad decrementum in basali planum Delocations durante 4h-sic epitaxy. dicitur. Physicis. Wright. XCIV, (XLIV) CMXVI (MMIX).
Zhang, X. & Tsuchida, H. conversionem de basalis planum Delocations ad threading ora Luxationes in 4h-sic epilayera per altum temperatus annales. Zhang, X. & Tsuchida, H. conversionem de basalis planum Delocations ad threading ora Luxationes in 4h-sic epilayera per altum temperatus annales.Zhang, X. Et Tsuchida, H. Transformation of Basal Pagina Delocations in threading Edge Luxationes in 4H-sic epitaxial stratis per altum temperatus annealing. Zhang X. & Tsuchida, H. 通过高温退火将 4H-sic 外延层中的基面位错转化为螺纹刃位错. Zhang X. & Tsuchida, H. 通过高温退火将 4H-sicZhang X. et Tsuchida, H. Transformation of basi planum Delocations in filamentum Edge Luxationes in 4h-sic epitaxial stratis per altum temperatus annales.J. Application. Physicis. CXI, (CXXIII) DXII (MMXII).
Canticum, H. Sudarshan, TS Basal Plane Delocationem conversionem circa epilayer / subiectum interface epitaxial incrementum IV ° off-axis 4h-sic. Canticum, H. Sudarshan, TS Basal Plane Delocationem conversionem circa epilayer / subiectum interface epitaxial incrementum IV ° off-axis 4h-sic.Canticum, H. et Sudarshan, Ts transformatio of basalis planum determinationes prope epitaxial layer / subiectum interface in off-axis epitaxial incrementum ex 4H-sicco. Canticum, H. Sudarshan, TS 在 IV ° 离轴 4H-sic 外延生长中外延层 / 衬底界面附近的基底平面位错转换. Song: & Sudarshan, Ts 在 IV ° 离轴 4H-sic Canticum, H. Sudarshan, TPlanar peccetur transitus subiecti prope epitaxial layer / subiectum terminus per epitaxial incrementum ex 4H-sic extra IV ° axis.J. Crystal. Augmentum CCCLXXI, 94-101 (MMXIII).
Konishi, K. et al. In alta current, propagatio de basali planum peccetur stacking culpa in 4h-sic epitaxial layers transforms in filamento obstupations. J. Application. Physicis. CXIV, (XIV) DIV (MMXIII).
Konishi, K. et al. Design EPITAXIAL layers ad Bipolar non-Degradable Sic MOSFETS per deprehenditur extenditur stacking culpa nucleation sites in operational X-ray topographic analysis. Aip Advanced XII, (XXXV) CCCX (MMXII).
Lin, S. et al. Influence of the basalia planum peccetur structuram in propagatione unius shockley-genus stacking culpa in deinceps current labe de 4h-sic pax dios. Iaponia. J. Application. Physicis. LVII, 04fr07 (MMXVIII).
Tahara, T. et al. In brevi minoritate carrier vita in NITROGENIUM-dives 4h-sic epilayers adhibetur ad supprimere stacking vitiis in pin Diodes. J. Application. Physicis. CXX, (CXV) CI (MMXVI).
Tahara, T. et al. Infunda carrier concentration dependentia unius shockleking culpa propagationem in 4h-sic pax diosdi. J. Application. Physicis CXXIII, (XXIV) DCCVII (MMXVIII).
Mae, S., Tawara, T., Tsuchida, H. & Kato, M. Microscopic FCA ratio pro profundum, resolvitur carrier vitae measurement in sic. Mae, S., Tawara, T., Tsuchida, H. & Kato, M. Microscopic FCA ratio pro profundum, resolvitur carrier vitae measurement in sic.Mei, S., Tawara, T., Tsuchida, H. et Kato, M. FCA microscopic ratio pro profundum, resolvi carrier vita mensura in Silicon carbide. Mae, S., Tawara, T., Tsuchida, H. Kato, M. 用于 sic 中深度分辨载流子寿命测量的显微 fca 系统. Mae, S. Tawara, T., Tsuchida, H. & Kato, M. pro Sic medium-profundum 分辨载流子 vita mensura 的月微 FCA ratio.Mei S., Tawara T., Tsuchida H. et Kato M. Micro-FCA ratio pro profundum-resolvitur carrier vitae mensuras in Silicon carbide.Alma mater Science Forum CMXXIV, 269-272 (MMXVIII).
Hirayama, T. et al. In profundum distribution of carrier vitae in densissima 4h-sic epitaxial layers erat metiri non-destructive usura tempus resolutio liberi carrier effusio et transgressus lucem. Switch ad scientia. Meter. XCI, (CXXIII) CMII (MMXX).
Post tempus: Nov-06-2022