Kev Tiv Thaiv ntawm stacking txhaum propagation nyob rau hauv 4H-SiC PiN diodes siv proton implantation kom tshem tawm bipolar degradation

Ua tsaug rau koj tuaj xyuas Nature.com. Qhov browser version koj siv tau txwv CSS kev txhawb nqa. Rau qhov kev paub zoo tshaj plaws, peb xav kom koj siv qhov browser tshiab (lossis lov tes taw Compatibility Hom hauv Internet Explorer). Nyob rau lub sijhawm no, txhawm rau ua kom muaj kev txhawb nqa txuas ntxiv, peb yuav ua rau lub xaib tsis muaj qauv thiab JavaScript.
4H-SiC tau ua lag luam ua cov khoom siv hluav taws xob semiconductor. Txawm li cas los xij, kev ntseeg tau ntev ntev ntawm 4H-SiC cov cuab yeej yog qhov cuam tshuam rau lawv daim ntawv thov dav, thiab qhov teeb meem tseem ceeb ntawm kev ntseeg siab ntawm 4H-SiC cov cuab yeej yog bipolar degradation. Qhov no degradation yog tshwm sim los ntawm ib qho Shockley stacking txhaum (1SSF) propagation ntawm basal dav hlau dislocations nyob rau hauv 4H-SiC crystals. Ntawm no, peb tawm tswv yim ib txoj hauv kev rau suppressing 1SSF expansion los ntawm implanting protons ntawm 4H-SiC epitaxial wafers. PiN diodes fabricated ntawm wafers nrog proton implantation pom tib yam tam sim no-voltage yam ntxwv li diodes tsis muaj proton implantation. Hauv qhov sib piv, 1SSF nthuav dav tau txais txiaj ntsig zoo hauv proton-implanted PiN diode. Yog li, kev cog qoob loo ntawm protons rau hauv 4H-SiC epitaxial wafers yog ib txoj hauv kev zoo rau kev tiv thaiv kev puas siab puas ntsws bipolar ntawm 4H-SiC lub zog semiconductor li thaum tuav cov cuab yeej ua haujlwm. Qhov txiaj ntsig no pab txhawb rau kev txhim kho ntawm 4H-SiC cov khoom siv tau zoo heev.
Silicon carbide (SiC) yog dav lees paub tias yog cov khoom siv hluav taws xob semiconductor rau cov khoom siv hluav taws xob siab, cov khoom siv hluav taws xob ntau zaus uas tuaj yeem ua haujlwm hauv ib puag ncig hnyav1. Muaj ntau ntau SiC polytypes, ntawm cov uas 4H-SiC muaj cov khoom siv hluav taws xob zoo tshaj plaws hauv lub cev xws li hluav taws xob muaj zog thiab muaj zog tawg hluav taws xob 2. 4H-SiC wafers nrog lub cheeb ntawm 6 ntiv tes yog tam sim no coj mus muag thiab siv rau loj zus tau tej cov hwj chim semiconductor li3. Traction systems rau hluav taws xob tsheb thiab tsheb ciav hlau tau tsim siv 4H-SiC4.5 fais fab semiconductor li. Txawm li cas los xij, 4H-SiC cov cuab yeej tseem raug kev txom nyem los ntawm cov teeb meem kev cia siab ntev ntev xws li dielectric tawg lossis kev cia siab rau luv luv, 6,7 ntawm cov teeb meem kev ntseeg siab tseem ceeb tshaj plaws yog bipolar degradation2,8,9,10,11. Qhov kev puas siab puas ntsws bipolar no tau tshawb pom ntau dua 20 xyoo dhau los thiab tau muaj teeb meem ntev hauv SiC cov khoom tsim.
Bipolar degradation yog tshwm sim los ntawm ib qho Shockley stack defect (1SSF) hauv 4H-SiC crystals nrog basal dav hlau dislocations (BPDs) propagating los ntawm recombination enhanced dislocation glide (REDG) 12,13,14,15,16,17,18,19. Yog li, yog tias BPD nthuav dav raug txwv rau 1SSF, 4H-SiC cov khoom siv hluav taws xob tuaj yeem tsim yam tsis muaj kev puas siab puas ntsws bipolar. Ntau txoj hauv kev tau tshaj tawm los txwv kev nthuav tawm BPD, xws li BPD rau Xov Edge Dislocation (TED) hloov pauv 20,21,22,23,24. Hauv qhov tseeb SiC epitaxial wafers, BPD yog tam sim no nyob rau hauv lub substrate thiab tsis nyob rau hauv lub epitaxial txheej vim yog hloov dua siab tshiab ntawm BPD rau TED thaum lub sij hawm thawj theem ntawm epitaxial loj hlob. Yog li ntawd, qhov teeb meem tseem tshuav ntawm kev puas siab puas ntsws bipolar yog kev faib tawm ntawm BPD hauv cov substrate 25,26,27. Qhov kev ntxig ntawm "composite reinforcing txheej" ntawm cov txheej drift thiab cov substrate tau raug npaj ua ib txoj hauv kev zoo rau suppressing BPD expansion nyob rau hauv lub substrate28, 29, 30, 31. Cov txheej no ua rau kom qhov tshwm sim ntawm electron-qhov khub recombination nyob rau hauv lub substrate. Epitaxial txheej thiab SiC substrate. Txo tus naj npawb ntawm cov electron-qhov khub txo qhov kev tsav tsheb ntawm REDG rau BPD hauv substrate, yog li cov txheej txheem sib xyaw ua ke tuaj yeem tiv thaiv kev puas tsuaj ntawm bipolar. Nws yuav tsum raug sau tseg tias qhov ntxig ntawm ib txheej entails cov nqi ntxiv hauv kev tsim cov wafers, thiab tsis muaj qhov ntxig ntawm ib txheej nws yog ib qho nyuaj los txo tus naj npawb ntawm electron-qhov khub los ntawm kev tswj tsuas yog kev tswj ntawm cov cab kuj lub neej. Yog li ntawd, tseem muaj lub zog xav tau los tsim lwm txoj hauv kev los tiv thaiv kom ua tiav qhov sib npaug zoo ntawm cov khoom tsim khoom thiab cov txiaj ntsig.
Vim hais tias kev txuas ntxiv ntawm BPD rau 1SSF yuav tsum tau txav ntawm ib feem ntawm qhov tsis sib xws (PDs), pinning PD yog ib txoj hauv kev zoo los tiv thaiv kev puas siab puas ntsws bipolar. Txawm hais tias PD pinning los ntawm hlau impurities tau raug tshaj tawm, FPDs hauv 4H-SiC substrates yog nyob ntawm qhov deb ntawm ntau tshaj 5 μm ntawm qhov chaw ntawm txheej epitaxial. Tsis tas li ntawd, txij li qhov diffusion coefficient ntawm ib qho hlau hauv SiC yog qhov tsawg heev, nws nyuaj rau cov hlau impurities kom diffuse rau hauv substrate34. Vim qhov loj atomic loj ntawm cov hlau, ion implantation ntawm hlau kuj nyuaj. Nyob rau hauv sib piv, nyob rau hauv cov ntaub ntawv ntawm hydrogen, lub lightest lub caij, ions (protons) yuav implanted rau hauv 4H-SiC mus rau ib tug tob ntawm ntau tshaj 10 µm siv ib tug MeV-chav kawm accelerator. Yog li, yog tias kev cog qoob loo proton cuam tshuam rau PD pinning, ces nws tuaj yeem siv los tua BPD propagation hauv substrate. Txawm li cas los xij, proton implantation tuaj yeem ua rau 4H-SiC puas thiab ua rau txo qis kev ua haujlwm ntawm 37,38,39,40.
Txhawm rau kov yeej cov cuab yeej degradation vim proton implantation, high-temperature annealing yog siv los kho kev puas tsuaj, zoo ib yam li cov txheej txheem annealing feem ntau siv tom qab txais ion implantation hauv cov cuab yeej ua 1, 40, 41, 42. Txawm hais tias theem nrab ion huab hwm coj spectrometry (SIMS) 43 muaj qhia txog hydrogen diffusion vim qhov kub-kub annealing, nws muaj peev xwm tsuas yog qhov ceev ntawm hydrogen atoms nyob ze FD tsis txaus los xyuas qhov pinning ntawm PR siv SIMS. Yog li ntawd, hauv txoj kev tshawb no, peb cog cov protons rau hauv 4H-SiC epitaxial wafers ua ntej cov txheej txheem tsim khoom, suav nrog kev kub siab annealing. Peb siv PiN diodes raws li kev sim ntsuas cov qauv thiab tsim lawv ntawm proton-implanted 4H-SiC epitaxial wafers. Tom qab ntawd peb tau soj ntsuam cov yam ntxwv ntawm volt-ampere los kawm txog qhov degradation ntawm cov cuab yeej ua tau zoo vim kev txhaj tshuaj proton. Tom qab ntawd, peb pom qhov nthuav dav ntawm 1SSF hauv cov duab electroluminescence (EL) tom qab siv hluav taws xob hluav taws xob rau PiN diode. Thaum kawg, peb tau lees paub qhov cuam tshuam ntawm kev txhaj tshuaj proton ntawm kev tawm tsam ntawm 1SSF nthuav dav.
Ntawm daim duab. Daim duab 1 qhia txog qhov tam sim no-voltage yam ntxwv (CVCs) ntawm PiN diodes ntawm chav tsev kub hauv cheeb tsam nrog thiab tsis muaj proton implantation ua ntej pulsed tam sim no. PiN diodes nrog kev txhaj tshuaj proton qhia cov yam ntxwv zoo ib yam li diodes yam tsis muaj kev txhaj tshuaj proton, txawm tias cov yam ntxwv IV tau sib koom ntawm cov diodes. Txhawm rau qhia qhov sib txawv ntawm qhov kev txhaj tshuaj, peb npaj qhov voltage zaus ntawm qhov ceev tam sim no ntawm 2.5 A / cm2 (suav nrog 100 mA) raws li daim duab statistical raws li qhia hauv daim duab 2. Qhov nkhaus kwv yees los ntawm ib qho kev faib tawm kuj yog sawv cev. los ntawm ib txoj kab dotted. kab. Raws li tuaj yeem pom los ntawm lub ncov ntawm cov nkhaus, qhov kev tiv thaiv me ntsis nce ntawm cov koob tshuaj proton ntawm 1014 thiab 1016 cm-2, thaum PiN diode nrog cov koob tshuaj proton ntawm 1012 cm-2 qhia yuav luag tib yam yam ntxwv zoo li tsis muaj kev cog lus proton. . Peb kuj tau ua proton implantation tom qab fabrication ntawm PiN diodes uas tsis pom zoo electroluminescence vim kev puas tsuaj los ntawm proton implantation raws li qhia nyob rau hauv daim duab S1 raws li tau piav nyob rau hauv yav dhau los kev tshawb fawb37,38,39. Yog li ntawd, annealing ntawm 1600 ° C tom qab implantation ntawm Al ions yog ib tug tsim nyog txheej txheem rau fabricate cov cuab yeej los qhib lub Al txais, uas yuav kho qhov kev puas tsuaj los ntawm proton implantation, uas ua rau cov CVCs zoo tib yam ntawm cog thiab tsis-implanted proton PiN diodes. . Qhov rov qab tam sim no zaus ntawm -5 V kuj tau nthuav tawm hauv daim duab S2, tsis muaj qhov sib txawv tseem ceeb ntawm diodes nrog thiab tsis muaj kev txhaj tshuaj proton.
Volt-ampere yam ntxwv ntawm PiN diodes nrog thiab tsis txhaj protons ntawm chav tsev kub. Cov lus dab neeg qhia txog qhov koob tshuaj ntawm protons.
Voltage zaus ntawm direct tam sim no 2.5 A / cm2 rau PiN diodes nrog txhaj thiab tsis-injected protons. Cov kab dotted sib raug rau qhov kev faib tawm ib txwm muaj.
Ntawm daim duab. 3 qhia EL duab ntawm PiN diode nrog qhov ceev ntawm 25 A / cm2 tom qab voltage. Ua ntej siv cov khoom thauj tam sim no, cov cheeb tsam tsaus ntawm lub diode tsis tau pom, raws li pom hauv daim duab 3. C2. Txawm li cas los xij, raws li qhia hauv daim duab. 3a, nyob rau hauv PiN diode tsis muaj proton implantation, ob peb tsaus nti striped cheeb tsam nrog lub teeb npoo tau pom tom qab siv hluav taws xob voltage. Cov pas nrig zoo li cov cheeb tsam tsaus nti tau pom hauv EL cov duab rau 1SSF txuas ntxiv los ntawm BPD hauv substrate28,29. Hloov chaw, qee qhov txuas txuas ntxiv ua txhaum cai tau pom nyob rau hauv PiN diodes nrog implanted protons, raws li qhia hauv daim duab 3b-d. Siv X-ray topography, peb tau lees paub tias muaj cov PRs uas tuaj yeem txav los ntawm BPD mus rau lub substrate ntawm lub periphery ntawm cov neeg sib cuag hauv PiN diode yam tsis muaj kev txhaj tshuaj proton (Daim duab 4: daim duab no tsis tau tshem tawm sab saum toj electrode (duab, PR). nyob rau hauv cov electrodes yog tsis pom). Cov chaw tsaus ntuj (lub sijhawm sib txawv EL cov duab ntawm PiN diodes yam tsis muaj kev txhaj tshuaj proton thiab cog rau ntawm 1014 cm-2) kuj tau qhia hauv Cov Lus Qhia Ntxiv .
EL cov duab ntawm PiN diodes ntawm 25 A / cm2 tom qab 2 teev ntawm hluav taws xob kev nyuaj siab (a) tsis muaj proton implantation thiab nrog implanted koob tshuaj ntawm (b) 1012 cm-2, (c) 1014 cm-2 thiab (d) 1016 cm-2 cov protons.
Peb xam qhov ceev ntawm qhov nthuav dav 1SSF los ntawm kev suav cov cheeb tsam tsaus ntuj nrog cov npoo ci hauv peb PiN diodes rau txhua qhov xwm txheej, raws li pom hauv daim duab 5. Qhov ntom ntawm nthuav dav 1SSF txo qis nrog kev nce koob tshuaj proton, thiab txawm tias ntawm ib koob ntawm 1012 cm-2, Qhov ntom ntawm nthuav dav 1SSF yog qhov qis dua li ntawm qhov tsis yog cog PiN diode.
Ntxiv qhov ntom ntom ntawm SF PiN diodes nrog thiab tsis muaj kev cog qoob loo proton tom qab thauj khoom nrog lub zog tam sim no (txhua lub xeev suav nrog peb lub diodes loaded).
Kev ua kom lub neej luv luv kuj tseem cuam tshuam rau kev nthuav tawm, thiab kev txhaj tshuaj proton txo cov neeg nqa khoom lub neej32,36. Peb tau soj ntsuam cov neeg nqa khoom lub neej nyob rau hauv ib txheej epitaxial 60 µm tuab nrog txhaj protons ntawm 1014 cm-2. Los ntawm thawj tus neeg nqa khoom lub neej, txawm hais tias cov cog cog txo tus nqi mus rau ~ 10%, tom qab annealing rov qab mus rau ~ 50%, raws li qhia hauv daim duab S7. Yog li ntawd, tus neeg nqa khoom lub neej, txo qis vim yog kev cog lus proton, yog rov qab los ntawm qhov kub thiab txias annealing. Txawm hais tias qhov txo qis ntawm 50% hauv cov neeg nqa khoom lub neej kuj tseem txwv tsis pub tshaj tawm ntawm qhov tsis raug, cov yam ntxwv I-V, uas feem ntau yog nyob ntawm tus neeg nqa khoom lub neej, qhia qhov sib txawv me me ntawm kev txhaj tshuaj thiab tsis yog cog diodes. Yog li ntawd, peb ntseeg tias PD anchoring plays lub luag haujlwm hauv inhibiting 1SSF expansion.
Txawm hais tias SIMS tsis pom hydrogen tom qab annealing ntawm 1600 ° C, raws li qhia hauv cov kev tshawb fawb yav dhau los, peb tau pom cov txiaj ntsig ntawm proton implantation ntawm kev tawm tsam ntawm 1SSF nthuav dav, raws li qhia hauv daim duab 1 thiab 4. 3, 4. Yog li ntawd, peb ntseeg tias PD yog anched los ntawm hydrogen atoms nrog qhov ceev hauv qab qhov kev kuaj pom ntawm SIMS (2 × 1016 cm-3) los yog taw tes qhov teeb meem tshwm sim los ntawm implantation. Nws yuav tsum raug sau tseg tias peb tsis tau lees paub qhov nce ntawm kev tiv thaiv hauv lub xeev vim qhov elongation ntawm 1SSF tom qab muaj kev nce siab tam sim no. Qhov no tej zaum yuav yog vim qhov tsis zoo ohmic hu ua siv peb cov txheej txheem, uas yuav raug tshem tawm yav tom ntej.
Hauv kev xaus, peb tau tsim ib txoj kev quenching rau txuas BPD rau 1SSF hauv 4H-SiC PiN diodes siv proton implantation ua ntej ntaus ntawv fabrication. Qhov tsis zoo ntawm tus yam ntxwv I-V thaum lub sij hawm cog qoob loo proton yog qhov tsis tseem ceeb, tshwj xeeb tshaj yog nyob rau ntawm qhov koob tshuaj proton ntawm 1012 cm-2, tab sis cov nyhuv ntawm inhibiting 1SSF expansion yog qhov tseem ceeb. Txawm hais tias nyob rau hauv txoj kev tshawb no peb fabricated 10 µm tuab PiN diodes nrog proton implantation mus rau ib tug tob ntawm 10 µm, nws tseem muaj peev xwm mus ntxiv optimize lub implantation tej yam kev mob thiab siv lawv mus fabricate lwm hom 4H-SiC li. Cov nqi ntxiv rau kev tsim cov cuab yeej siv thaum lub sij hawm cog qoob loo proton yuav tsum tau txiav txim siab, tab sis lawv yuav zoo ib yam li cov khoom siv rau kev cog qoob loo aluminium ion, uas yog cov txheej txheem tseem ceeb ntawm 4H-SiC cov khoom siv hluav taws xob. Yog li, proton implantation ua ntej cov cuab yeej ua haujlwm yog ib txoj hauv kev rau kev tsim 4H-SiC bipolar fais fab khoom tsis muaj degeneration.
Ib tug 4-nti n-hom 4H-SiC wafer nrog ib txheej epitaxial thickness ntawm 10 µm thiab ib tug pub doping concentration ntawm 1 × 1016 cm-3 yog siv raws li ib tug qauv. Ua ntej ua tiav cov cuab yeej, H + ions tau cog rau hauv lub phaj nrog lub zog nrawm ntawm 0.95 MeV ntawm chav tsev kub mus rau qhov tob ntawm 10 μm ntawm lub kaum sab xis ntawm lub phaj. Thaum lub sij hawm cog qoob loo proton, siv lub npog ntsej muag ntawm lub phaj, thiab lub phaj muaj cov seem uas tsis muaj thiab nrog cov tshuaj proton ntawm 1012, 1014, lossis 1016 cm-2. Tom qab ntawd, Al ions nrog cov tshuaj proton ntawm 1020 thiab 1017 cm-3 tau cog rau tag nrho wafer mus rau qhov tob ntawm 0-0.2 µm thiab 0.2-0.5 µm ntawm qhov chaw, tom qab ntawd annealing ntawm 1600 ° C los tsim cov pa roj carbon monoxide rau. form ap txheej. - hom. Tom qab ntawd, sab nraub qaum Ni kev sib cuag tau muab tso rau ntawm sab substrate, thaum 2.0 hli × 2.0 hli comb-shaped Ti / Al pem hauv ntej sab kev sib cuag tsim los ntawm photolithography thiab txheej txheem tev tau muab tso rau ntawm epitaxial txheej sab. Thaum kawg, hu rau annealing yog nqa tawm ntawm qhov kub ntawm 700 ° C. Tom qab txiav cov wafer rau hauv cov chips, peb tau ua qhov kev ntxhov siab thiab kev thov.
Cov yam ntxwv I-V ntawm cov khoom tsim PiN diodes tau pom siv HP4155B semiconductor parameter analyzer. Raws li kev ntxhov siab hluav taws xob, 10-millisecond pulsed tam sim no ntawm 212.5 A / cm2 tau qhia rau 2 teev ntawm qhov zaus ntawm 10 pulses / sec. Thaum peb xaiv qhov qis dua tam sim no los yog zaus, peb tsis tau soj ntsuam 1SSF nthuav dav txawm tias hauv PiN diode yam tsis muaj kev txhaj tshuaj proton. Thaum lub sij hawm siv hluav taws xob hluav taws xob, qhov kub ntawm PiN diode yog nyob ib ncig ntawm 70 ° C yam tsis muaj cua sov, raws li qhia hauv daim duab S8. Electroluminescent dluab tau txais ua ntej thiab tom qab hluav taws xob kev ntxhov siab ntawm qhov ceev tam sim no ntawm 25 A / cm2. Synchrotron reflection grazing tshwm sim X-ray topography siv lub monochromatic X-ray beam (λ = 0.15 nm) ntawm Aichi Synchrotron Radiation Center, ag vector hauv BL8S2 yog -1-128 lossis 11-28 (saib ref. 44 kom paub meej) . ).
Qhov voltage zaus ntawm qhov ceev tam sim no ntawm 2.5 A / cm2 yog muab rho tawm nrog lub sijhawm ntawm 0.5 V hauv daim duab. 2 raws li CVC ntawm txhua lub xeev ntawm PiN diode. Los ntawm tus nqi nruab nrab ntawm qhov kev ntxhov siab Vave thiab tus qauv sib txawv σ ntawm qhov kev ntxhov siab, peb npaj ib qho kev faib tawm nkhaus nyob rau hauv daim ntawv ntawm kab dotted hauv daim duab 2 siv cov kab zauv hauv qab no:
Werner, MR & Fahrner, WR Review ntawm cov ntaub ntawv, microsensors, systems thiab pab kiag li lawm rau high-kub thiab hnyav-ib puag ncig daim ntaub ntawv. Werner, MR & Fahrner, WR Review ntawm cov ntaub ntawv, microsensors, systems thiab pab kiag li lawm rau high-kub thiab hnyav-ib puag ncig daim ntaub ntawv.Werner, MR thiab Farner, WR Txheej txheem cej luam ntawm cov ntaub ntawv, microsensors, tshuab thiab khoom siv rau kev siv hauv qhov kub thiab txias. Werner, MR & Fahrner, WR 对用于高温和恶劣环境应用的材料、微传感器、系统和设备的评论。 Werner, MR & Fahrner, WR Kev tshuaj xyuas cov ntaub ntawv, microsensors, tshuab thiab cov cuab yeej siv rau kev kub siab thiab kev siv tsis zoo ib puag ncig.Werner, MR thiab Farner, WR Txheej txheem cej luam ntawm cov ntaub ntawv, microsensors, tshuab thiab cov khoom siv rau kev siv ntawm qhov kub thiab txias thiab hnyav.IEEE Trans. Industrial electronics. 48, 249–257 (2001).
Kimoto, T. & Cooper, JA Fundamentals ntawm Silicon Carbide Technology Fundamentals ntawm Silicon Carbide Technology: Kev Loj Hlob, Cim, Cov Khoom Siv thiab Kev Siv Vol. Kimoto, T. & Cooper, JA Fundamentals ntawm Silicon Carbide Technology Fundamentals ntawm Silicon Carbide Technology: Kev Loj Hlob, Cim, Cov Khoom Siv thiab Kev Siv Vol.Kimoto, T. and Cooper, JA Basics of Silicon Carbide Technology Basics of Silicon Carbide Technology: Kev loj hlob, yam ntxwv, khoom siv thiab kev siv Vol. Kimoto, T. & Cooper, JA 碳化硅技术基础碳化硅技术基础:增长、表征、设备和应用卷。 Kimoto, T. & Cooper, JA Carbon 化silicon technology puag Carbon 化silicon technology puag: kev loj hlob, piav qhia, khoom siv thiab ntim daim ntawv thov.Kimoto, T. and Cooper, J. Basics of Silicon Carbide Technology Basics of Silicon Carbide Technology: Kev loj hlob, yam ntxwv, khoom siv thiab kev siv Vol.252 (Wiley Singapore Pte Ltd, 2014).
Veliadis, V. Loj Scale Commercialization ntawm SiC: Status Quo thiab Obstacles yuav kov yeej. alma mav. kev kawm. 1062, 125–130 (2022).
Broughton, J., Smet, V., Tummala, RR & Joshi, YK Kev tshuaj xyuas ntawm thermal ntim technologies rau automotive fais fab electronics rau lub hom phiaj traction. Broughton, J., Smet, V., Tummala, RR & Joshi, YK Kev tshuaj xyuas ntawm thermal ntim technologies rau automotive fais fab electronics rau lub hom phiaj traction.Broughton, J., Smet, V., Tummala, RR thiab Joshi, YK Txheej txheem cej luam ntawm thermal ntim technologies rau automotive fais fab electronics rau traction lub hom phiaj. Broughton, J., Smet, V., Tummala, RR & Joshi, YK 用于牵引目的汽车电力电子热封装技术的回顾. Broughton, J., Smet, V., Tummala, RR & Joshi, YKBroughton, J., Smet, V., Tummala, RR thiab Joshi, YK Txheej txheem cej luam ntawm thermal ntim tshuab rau automotive fais fab electronics rau lub hom phiaj traction.J. Electron. Pob. trance. ASME 140, 1-11 (2018).
Sato, K., Kato, H. & Fukushima, T. Kev loj hlob ntawm SiC siv traction system rau lwm tiam Shinkansen high-speed tsheb ciav hlau. Sato, K., Kato, H. & Fukushima, T. Kev loj hlob ntawm SiC siv traction system rau lwm tiam Shinkansen high-speed tsheb ciav hlau.Sato K., Kato H. thiab Fukushima T. Kev tsim kho ntawm SiC traction system rau tiam tom ntej high-speed Shinkansen tsheb ciav hlau.Sato K., Kato H. thiab Fukushima T. Traction System Development rau SiC daim ntawv thov rau Next Generation High-Speed ​​​​Shinkansen Tsheb ciav hlau. Appendix IEEJ J. Ind. 9, 453–459 (2020).
Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. Kev sib tw kom paub txog SiC fais fab kev ntseeg siab heev: Los ntawm cov xwm txheej tam sim no thiab teeb meem ntawm SiC wafers. Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. Kev sib tw kom paub txog SiC fais fab kev ntseeg siab heev: Los ntawm cov xwm txheej tam sim no thiab teeb meem ntawm SiC wafers.Senzaki, J., Hayashi, S., Yonezawa, Y. thiab Okumura, H. Cov teeb meem ntawm kev siv cov khoom siv hluav taws xob SiC muaj kev ntseeg siab heev: pib ntawm lub xeev tam sim no thiab qhov teeb meem ntawm wafer SiC. Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. 实现高可靠性SiC 功率器件的挑战:从SiC 晶圆的现状和问 Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. Qhov kev sib tw ntawm kev ua tiav kev ntseeg siab hauv SiC cov khoom siv fais fab: los ntawm SiC 晶圆的电视和问题设计.Senzaki J, Hayashi S, Yonezawa Y. thiab Okumura H. Kev sib tw hauv kev txhim kho cov khoom siv hluav taws xob muaj kev ntseeg siab raws li silicon carbide: kev tshuaj xyuas cov xwm txheej thiab teeb meem cuam tshuam nrog silicon carbide wafers.Ntawm 2018 IEEE International Symposium ntawm Kev Ntseeg Physics (IRPS). (Senzaki, J. et al. eds.) 3B.3-1-3B.3-6 (IEEE, 2018).
Kim, D. & Sung, W. Txhim kho luv-circuit ruggedness rau 1.2kV 4H-SiC MOSFET siv qhov sib sib zog nqus P-zoo siv los ntawm channeling implantation. Kim, D. & Sung, W. Txhim kho luv-circuit ruggedness rau 1.2kV 4H-SiC MOSFET siv qhov sib sib zog nqus P-zoo siv los ntawm channeling implantation.Kim, D. thiab Sung, V. Txhim kho kev tiv thaiv luv luv rau 1.2 kV 4H-SiC MOSFET siv qhov sib sib zog nqus P-zoo siv los ntawm kev cog qoob loo. Kim, D. & Sung, W. 使用通过沟道注入实现的深P 阱提高了1.2kV 4H-SiC MOSFET 的短路耐用性. Kim, D. & Sung, W. P 阱提高了1.2kV 4H-SiC MOSFETKim, D. thiab Sung, V. Txhim kho luv-circuit kam rau ua ntawm 1.2 kV 4H-SiC MOSFETs siv sib sib zog nqus P-wells los ntawm channel implantation.IEEE Electronic Devices Lett. 42, 1822–1825 (2021).
Skowronski M. et al. Recombination-enhanced tsab ntawv tsa suab ntawm qhov tsis xws luag nyob rau hauv pem hauv ntej-biased 4H-SiC pn diodes. J. Application. physics. 92, 4699–4704 (2002).
Ha, S., Mieszkowski, P., Skowronski, M. & Rowland, LB Dislocation conversion hauv 4H silicon carbide epitaxy. Ha, S., Mieszkowski, P., Skowronski, M. & Rowland, LB Dislocation conversion hauv 4H silicon carbide epitaxy.Ha S., Meszkowski P., Skowronski M. thiab Rowland LB Dislocation transformation thaum 4H silicon carbide epitaxy. Ha, S., Mieszkowski, P., Skowronski, M. & Rowland, LB 4H 碳化硅外延中的位错转换. Ha, S., Mieszkowski, P., Skowronski, M. & Rowland, LB 4H Ha, S., Meszkowski, P., Skowronski, M. & Rowland, LBDislocation hloov 4H hauv silicon carbide epitaxy.J. Crystal. Kev Loj Hlob 244, 257–266 (2002).
Skowronski, M. & Ha, S. Degradation ntawm hexagonal silicon-carbide-based bipolar li. Skowronski, M. & Ha, S. Degradation ntawm hexagonal silicon-carbide-based bipolar li.Skowronski M. thiab Ha S. Degradation ntawm hexagonal bipolar li raws li silicon carbide. Skowronski, M. & Ha, S. 六方碳化硅基双极器件的降解. Skowronski M. & Ha S.Skowronski M. thiab Ha S. Degradation ntawm hexagonal bipolar li raws li silicon carbide.J. Application. Physics 99, 011101 (2006).
Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H.Agarwal A., Fatima H., Heini S. and Ryu S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H.Agarwal A., Fatima H., Heini S. and Ryu S.-H.Ib tug tshiab degradation mechanism rau high-voltage SiC zog MOSFETs. IEEE Electronic Devices Lett. 28, 587–589 (2007).
Caldwell, JD, Stahlbush, RE, Ancona, MG, Glembocki, OJ & Hobart, KD Ntawm kev tsav tsheb rau kev sib koom ua ke-induced stacking fault motion hauv 4H–SiC. Caldwell, JD, Stahlbush, RE, Ancona, MG, Glembocki, OJ & Hobart, KD Ntawm kev tsav tsheb rau kev sib koom ua ke-induced stacking txhaum tsab ntawv tsa suab hauv 4H-SiC.Caldwell, JD, Stalbush, RE, Ancona, MG, Glemboki, OJ, thiab Hobart, KD Ntawm kev tsav tsheb ntawm recombination-induced stacking fault motion hauv 4H-SiC. Caldwell, JD, Stahlbush, RE, Ancona, MG, Glembocki, OJ & Hobart, KD 关于4H-SiC 中复合引起的层错运动的驱动力. Caldwell, JD, Stahlbush, RE, Ancona, MG, Glembocki, OJ & Hobart, KDCaldwell, JD, Stalbush, RE, Ancona, MG, Glemboki, OJ, thiab Hobart, KD, Ntawm kev tsav tsheb ntawm kev sib koom ua ke-induced stacking txhaum tsab ntawv tsa suab hauv 4H-SiC.J. Application. physics. 108, 044503 (2010).
Iijima, A. & Kimoto, T. Electronic zog qauv rau ib leeg Shockley stacking txhaum tsim nyob rau hauv 4H-SiC crystals. Iijima, A. & Kimoto, T. Electronic zog qauv rau ib leeg Shockley stacking txhaum tsim nyob rau hauv 4H-SiC crystals.Iijima, A. thiab Kimoto, T. Electron-zog qauv ntawm kev tsim ntawm ib qho tsis xws luag ntawm Shockley packing nyob rau hauv 4H-SiC crystals. Iijima, A. & Kimoto, T. 4H-SiC 晶体中单Shockley 堆垛层错形成的电子能量模型. Iijima, A. & Kimoto, T. Electronic zog qauv ntawm ib leeg Shockley stacking txhaum tsim nyob rau hauv 4H-SiC siv lead ua.Iijima, A. thiab Kimoto, T. Electron-zog qauv ntawm kev tsim ntawm ib qho tsis xws luag Shockley packing nyob rau hauv 4H-SiC crystals.J. Application. physics 126, 105703 (2019).
Iijima, A. & Kimoto, T. Kev kwv yees ntawm qhov teeb meem tseem ceeb rau kev nthuav dav / kev cog lus ntawm ib leeg Shockley stacking faults hauv 4H-SiC PiN diodes. Iijima, A. & Kimoto, T. Kev kwv yees ntawm qhov teeb meem tseem ceeb rau kev nthuav dav / kev cog lus ntawm ib leeg Shockley stacking faults hauv 4H-SiC PiN diodes.Iijima, A. thiab Kimoto, T. Kev kwv yees ntawm lub xeev tseem ceeb rau kev nthuav dav / compression ntawm ib leeg Shockley packing defects hauv 4H-SiC PiN-diodes. Iijima, A. & Kimoto, T. 估计4H-SiC PiN 二极管中单个Shockley 堆垛层错膨胀/收缩的临界条件. Iijima, A. & Kimoto, T. Kev kwv yees ntawm ib leeg Shockley stacking txheej expansion/contraction tej yam kev mob nyob rau hauv 4H-SiC PiN diodes.Iijima, A. thiab Kimoto, T. Kev kwv yees ntawm cov xwm txheej tseem ceeb rau kev nthuav dav / compression ntawm ib qho tsis xws luag packing Shockley hauv 4H-SiC PiN-diodes.daim ntawv thov physics Wright. 116, 092105 (2020).
Mannen, Y., Shimada, K., Asada, K. & Ohtani, N. Quantum zoo ua qauv rau kev tsim ntawm ib tug Shockley stacking txhaum nyob rau hauv ib tug 4H-SiC siv lead ua nyob rau hauv tsis-equilibrium tej yam kev mob. Mannen, Y., Shimada, K., Asada, K. & Ohtani, N. Quantum zoo ua qauv rau kev tsim ntawm ib tug Shockley stacking txhaum nyob rau hauv ib tug 4H-SiC siv lead ua nyob rau hauv tsis-equilibrium tej yam kev mob.Mannen Y., Shimada K., Asada K., thiab Otani N. Ib tug quantum zoo qauv rau kev tsim ntawm ib tug Shockley stacking txhaum nyob rau hauv ib tug 4H-SiC siv lead ua nyob rau hauv nonequilibrium tej yam kev mob.Mannen Y., Shimada K., Asada K. thiab Otani N. Quantum zoo sib cuam tshuam qauv rau kev tsim ntawm ib leeg Shockley stacking faults nyob rau hauv 4H-SiC crystals nyob rau hauv nonequilibrium tej yam kev mob. J. Application. physics. 125, 085705 (2019).
Galeckas, A., Linnros, J. & Pirouz, P. Recombination-induced stacking faults: Pov thawj rau cov txheej txheem dav dav hauv hexagonal SiC. Galeckas, A., Linnros, J. & Pirouz, P. Recombination-induced stacking faults: Pov thawj rau cov txheej txheem dav dav hauv hexagonal SiC.Galeckas, A., Linnros, J. thiab Pirouz, P. Recombination-Induced Packing Defects: Pov thawj rau ib qho kev siv tshuab hauv Hexagonal SiC. Galeckas, A., Linnros, J. & Pirouz, P. 复合诱导的堆垛层错:六方SiC中一般机制的证据. Galeckas, A., Linnros, J. & Pirouz, P. Cov pov thawj rau cov txheej txheem dav dav ntawm kev sib xyaw induction stacking txheej: 六方SiC.Galeckas, A., Linnros, J. thiab Pirouz, P. Recombination-Induced Packing Defects: Pov thawj rau ib qho kev siv tshuab hauv Hexagonal SiC.physics Xibhwb Wright. 96, 025502 (2006).
Ishikawa, Y., Sudo, M., Yao, Y.-Z., Sugawara, Y. & Kato, M. Kev nthuav dav ntawm ib qho Shockley stacking txhaum hauv 4H-SiC (11 2 ¯0) epitaxial txheej tshwm sim los ntawm electron nqaj irradiation.Ishikawa, Y., M. Sudo, Y.-Z beam irradiation.Ishikawa, Y., Sudo M., Y.-Z Psychology.Box, UA, M. Судо, Y.-Z Chem., J. Chem., 123, 225101 (2018).
Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. Kev soj ntsuam ntawm cov cab kuj recombination hauv ib qho Shockley stacking faults thiab ntawm ib nrab dislocations hauv 4H-SiC. Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. Kev soj ntsuam ntawm cov cab kuj recombination hauv ib qho Shockley stacking faults thiab ntawm ib nrab dislocations hauv 4H-SiC.Kato M., Katahira S., Itikawa Y., Harada S. thiab Kimoto T. Kev soj ntsuam ntawm Carrier Recombination in Single Shockley Packing Defects and Partial Dislocations in 4H-SiC. Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. 单Shockley 堆垛层错和4H-SiC 部分位错中载流子复合的观。 Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. 单Shockley stacking stacking 和4H-SiC ib nrab 位错中载流子去生的可以.Kato M., Katahira S., Itikawa Y., Harada S. thiab Kimoto T. Kev soj ntsuam ntawm Carrier Recombination in Single Shockley Packing Defects and Partial Dislocations in 4H-SiC.J. Application. physics 124, 095702 (2018).
Kimoto, T. & Watanabe, H. Defect engineering hauv SiC thev naus laus zis rau cov khoom siv hluav taws xob siab. Kimoto, T. & Watanabe, H. Defect engineering hauv SiC thev naus laus zis rau cov khoom siv hluav taws xob siab.Kimoto, T. thiab Watanabe, H. Kev txhim kho qhov tsis xws luag hauv SiC thev naus laus zis rau cov khoom siv hluav taws xob siab. Kimoto, T. & Watanabe, H. 用于高压功率器件的SiC 技术中的缺陷工程. Kimoto, T. & Watanabe, H. Defect engineering hauv SiC thev naus laus zis rau cov khoom siv hluav taws xob siab.Kimoto, T. thiab Watanabe, H. Kev txhim kho qhov tsis xws luag hauv SiC thev naus laus zis rau cov khoom siv hluav taws xob siab.Daim ntawv thov physics Express 13, 120101 (2020).
Zhang, Z. & Sudarshan, TS Basal dav hlau dislocation-dawb epitaxy ntawm silicon carbide. Zhang, Z. & Sudarshan, TS Basal dav hlau dislocation-dawb epitaxy ntawm silicon carbide.Zhang Z. thiab Sudarshan TS Dislocation-dawb epitaxy ntawm silicon carbide nyob rau hauv lub basal dav hlau. Zhang, Z. & Sudarshan, TS 碳化硅基面无位错外延. Zhang, Z. & Sudarshan, TSZhang Z. thiab Sudarshan TS Dislocation-dawb epitaxy ntawm silicon carbide basal dav hlau.nqe lus. physics. Wright. 87, 151913 (2005).
Zhang, Z., Moulton, E. & Sudarshan, TS Mechanism ntawm tshem tawm basal dav hlau dislocations nyob rau hauv SiC nyias zaj duab xis los ntawm epitaxy ntawm ib tug etched substrate. Zhang, Z., Moulton, E. & Sudarshan, TS Mechanism ntawm tshem tawm basal dav hlau dislocations nyob rau hauv SiC nyias zaj duab xis los ntawm epitaxy ntawm ib tug etched substrate.Zhang Z., Moulton E. thiab Sudarshan TS Mechanism ntawm kev tshem tawm lub hauv paus dav hlau dislocations hauv SiC nyias zaj duab xis los ntawm epitaxy ntawm ib qho etched substrate. Zhang, Z., Moulton, E. & Sudarshan, TS 通过在蚀刻衬底上外延消除SiC 薄膜中基面位错的机制. Zhang, Z., Moulton, E. & Sudarshan, TS Lub mechanism ntawm kev tshem tawm ntawm SiC nyias zaj duab xis los ntawm etching lub substrate.Zhang Z., Moulton E. thiab Sudarshan TS Mechanism ntawm kev tshem tawm lub hauv paus dav hlau dislocations hauv SiC nyias zaj duab xis los ntawm epitaxy ntawm etched substrates.daim ntawv thov physics Wright. 89, 081910 (2006).
Shtalbush RE et al. Kev loj hlob cuam tshuam ua rau txo qis hauv basal dav hlau dislocations thaum 4H-SiC epitaxy. nqe lus. physics. Wright. 94, 041916 (2009).
Zhang, X. & Tsuchida, H. Conversion ntawm basal dav hlau dislocations rau threading ntug dislocations nyob rau hauv 4H-SiC epilayers los ntawm kub annealing. Zhang, X. & Tsuchida, H. Conversion ntawm basal dav hlau dislocations rau threading ntug dislocations nyob rau hauv 4H-SiC epilayers los ntawm kub annealing.Zhang, X. thiab Tsuchida, H. Kev hloov pauv ntawm basal dav hlau dislocations rau hauv threading ntug dislocations nyob rau hauv 4H-SiC epitaxial txheej los ntawm kub annealing. Zhang, X. & Tsuchida, H. 通过高温退火将4H-SiC 外延层中的基面位错转化为螺纹刃位错. Zhang, X. & Tsuchida, H. 通过高温退火将 4H-SiCZhang, X. thiab Tsuchida, H. Kev hloov pauv ntawm lub hauv paus dav hlau dislocations rau hauv filament ntug dislocations nyob rau hauv 4H-SiC epitaxial txheej los ntawm kub annealing.J. Application. physics. 111, 123512 (2012).
Nkauj, H. & Sudarshan, TS Basal dav hlau dislocation hloov dua siab tshiab nyob ze lub epilayer/substrate interface nyob rau hauv epitaxial loj hlob ntawm 4 ° tawm-axis 4H-SiC. Nkauj, H. & Sudarshan, TS Basal dav hlau dislocation hloov dua siab tshiab nyob ze lub epilayer/substrate interface nyob rau hauv epitaxial loj hlob ntawm 4 ° tawm-axis 4H-SiC.Nkauj, H. thiab Sudarshan, TS Hloov pauv ntawm basal dav hlau dislocations nyob ze ntawm lub epitaxial txheej / substrate interface thaum off-axis epitaxial loj hlob ntawm 4H-SiC. Nkauj, H. & Sudarshan, TS 在4° 离轴4H-SiC 外延生长中外延层/衬底界面附近的基底平面位错转换. Song, H. & Sudarshan, TS 在4° 离轴4H-SiC Song, H. & Sudarshan, TSPlanar dislocation hloov ntawm lub substrate nyob ze ntawm lub epitaxial txheej / substrate ciam teb thaum lub sij hawm epitaxial loj hlob ntawm 4H-SiC sab nraum 4 ° axis.J. Crystal. Kev Loj Hlob 371, 94–101 (2013).
Konishi, K. et al. Ntawm qhov siab tam sim no, kev nthuav tawm ntawm lub dav hlau basal dislocation stacking txhaum nyob rau hauv 4H-SiC epitaxial txheej hloov mus rau hauv filament ntug dislocations. J. Application. physics. 114, 014504 (2013).
Konishi, K. et al. Tsim cov txheej txheem epitaxial rau bipolar uas tsis yog-degradable SiC MOSFETs los ntawm kev tshawb nrhiav txuas ntxiv qhov chaw ua txhaum nucleation hauv kev ua haujlwm X-ray topographic tsom xam. AIP Advanced 12, 035310 (2022).
Lin, S. et al. Kev cuam tshuam ntawm lub dav hlau basal dislocation qauv ntawm kev nthuav tawm ntawm ib qho Shockley-type stacking txhaum thaum lub sij hawm rau pem hauv ntej tam sim no lwj ntawm 4H-SiC tus pin diodes. Nyiv. J. Application. physics. 57, 04FR07 (2018).
Tahara, T., et al. Lub neej luv luv ntawm cov neeg nqa khoom hauv lub neej nyob rau hauv nitrogen-nplua nuj 4H-SiC epilayers yog siv los suppress stacking faults hauv PiN diodes. J. Application. physics. 120, 115101 (2016).
Tahara, T. et al. Txhaj cov cab kuj concentration dependence ntawm ib leeg Shockley stacking txhaum propagation nyob rau hauv 4H-SiC PiN diodes. J. Application. Physics 123, 025707 (2018).
Mae, S., Tawara, T., Tsuchida, H. & Kato, M. Microscopic FCA system rau qhov tob daws teeb meem lub neej ntsuas hauv SiC. Mae, S., Tawara, T., Tsuchida, H. & Kato, M. Microscopic FCA system rau qhov tob daws teeb meem lub neej ntsuas hauv SiC.Mei, S., Tawara, T., Tsuchida, H. and Kato, M. FCA Microscopic System for Depth-Resolved Carrier Lifetime Measurements in Silicon Carbide. Mae, S., Tawara, T., Tsuchida, H. & Kato, M. 用于SiC 中深度分辨载流子寿命测量的显微 FCA 系统. Mae, S., Tawara, T., Tsuchida, H. & Kato, M. Rau SiC nruab nrab qhov tob 分辨载流子 kev ntsuas lub neej的月微FCA system.Mei S., Tawara T., Tsuchida H. thiab Kato M. Micro-FCA system rau qhov tob daws teeb meem lub neej ntsuas hauv silicon carbide.alma mater science Forum 924, 269–272 (2018).
Hirayama, T. et al. Qhov tob tis ntawm cov cab kuj lub neej nyob rau hauv tuab 4H-SiC epitaxial khaubncaws sab nraud povtseg yog ntsuas uas tsis yog-destructively siv lub sij hawm daws teeb meem ntawm dawb carrier absorption thiab hla lub teeb. Hloov mus rau science. meter. 91, 123902 (2020).


Post lub sij hawm: Nov-06-2022