Ka hoʻopau ʻana i ka hoʻolaha hewa ʻana i nā diodes 4H-SiC PiN me ka hoʻohana ʻana i ka proton implantation e hoʻopau i ka bipolar degradation.

Mahalo no kou kipa ʻana iā Nature.com. ʻO ka polokalamu kele pūnaewele āu e hoʻohana nei he kākoʻo CSS kaupalena. No ka ʻike maikaʻi loa, manaʻo mākou e hoʻohana i kahi polokalamu kele pūnaewele hou (a i ʻole e hoʻopau i ke ʻano Compatibility Mode ma Internet Explorer). I kēia manawa, e hōʻoia i ke kākoʻo mau ʻana, e hāʻawi mākou i ka pūnaewele me ka ʻole o nā ʻano a me JavaScript.
Ua kūʻai ʻia ʻo 4H-SiC ma ke ʻano he mea no nā mana semiconductor mana. Eia naʻe, ʻo ka hilinaʻi lōʻihi o nā mea 4H-SiC he mea keakea i kā lākou noi ākea, a ʻo ka pilikia hilinaʻi nui loa o nā mea 4H-SiC ʻo ia ka bipolar degradation. Hoʻokumu ʻia kēia hoʻohaʻahaʻa ʻana e kahi Shockley stacking fault (1SSF) hoʻolaha o nā dislocations basal plane i nā kristal 4H-SiC. Ma ʻaneʻi, hāʻawi mākou i kahi ala no ke kāohi ʻana i ka hoʻonui ʻana o 1SSF ma o ka hoʻokomo ʻana i nā protons ma 4H-SiC epitaxial wafers. ʻO nā diodes PiN i hana ʻia ma nā wafers me ka hoʻokomo ʻia ʻana o ka proton i hōʻike i nā hiʻohiʻona o kēia manawa-voltage like me nā diodes me ka hoʻokomo ʻole ʻana o ka proton. Ma ka hoʻohālikelike ʻana, ua hoʻopau maikaʻi ʻia ka hoʻonui ʻana o 1SSF i ka diode PiN-implanted proton. No laila, ʻo ka hoʻokomo ʻana o nā protons i loko o 4H-SiC epitaxial wafers he ala kūpono ia no ka hoʻopau ʻana i ka bipolar degradation o nā mana semiconductor mana 4H-SiC i ka wā e mālama ana i ka hana o ka mīkini. Hāʻawi kēia hopena i ka hoʻomohala ʻana i nā polokalamu 4H-SiC hilinaʻi loa.
Ua ʻike nui ʻia ʻo Silicon carbide (SiC) ma ke ʻano he mea semiconductor no nā mana kiʻekiʻe, kiʻekiʻe-frequency semiconductor mea hiki ke hana ma nā wahi ʻino1. He nui nā SiC polytypes, ma waena o 4H-SiC he mea maikaʻi loa ka mīkini semiconductor waiwai kino e like me ke kiʻekiʻe electron mobility a me ka ikaika breakdown electric field2. ʻO nā wafers 4H-SiC me ke anawaena o 6 iniha ke kūʻai ʻia nei a hoʻohana ʻia no ka hana nui ʻana o nā mea hana semiconductor mana3. Ua hana ʻia nā ʻōnaehana huki no nā kaʻa uila a me nā kaʻaahi me ka hoʻohana ʻana i nā mea hana semiconductor mana 4H-SiC4.5. Eia naʻe, pilikia mau nā mea 4H-SiC i nā pilikia hilinaʻi lōʻihi e like me ka dielectric breakdown a i ʻole ka hilinaʻi pōkole pōkole, ʻo 6,7 kekahi o nā pilikia hilinaʻi nui loa he bipolar degradation2,8,9,10,11. Ua ʻike ʻia kēia hoʻohaʻahaʻa bipolar ma mua o 20 mau makahiki i hala aku nei a ua lōʻihi ka pilikia i ka hana ʻana i nā hāmeʻa SiC.
Hoʻokumu ʻia ka bipolar degradation e kahi defect Shockley stack (1SSF) i nā kristal 4H-SiC me nā dislocations plane basal (BPDs) e hoʻolaha ana e ka recombination enhanced dislocation glide (REDG)12,13,14,15,16,17,18,19. No laila, inā hoʻopaʻa ʻia ka hoʻonui BPD i 1SSF, hiki ke hana ʻia nā mana mana 4H-SiC me ka ʻole o ka bipolar degradation. Ua hōʻike ʻia kekahi mau ala e hoʻopau i ka hoʻolaha ʻana o BPD, e like me ka BPD i ka Thread Edge Dislocation (TED) hoʻololi 20,21,22,23,24. I nā wafers epitaxial SiC hou loa, aia ka BPD i ka substrate a ʻaʻole i ka papa epitaxial ma muli o ka hoʻololi ʻana o BPD i TED i ka wā mua o ka ulu epitaxial. No laila,ʻo ke koena o ka pilikia o ka bipolar degradation,ʻo ia ka hāʻawiʻana i ka BPD ma ka substrate 25,26,27. ʻO ka hoʻokomo ʻana i kahi "papa hoʻoikaika hoʻohui" ma waena o ka papa drift a me ka substrate ua manaʻo ʻia ma ke ʻano he ala kūpono no ke kāohi ʻana i ka hoʻonui ʻana o ka BPD ma ka substrate28, 29, 30, 31. Hoʻonui kēia papa i ka hiki ke hoʻohui hou ʻia nā lua electron-hole i ka papa epitaxial a me ka substrate SiC. ʻO ka hōʻemi ʻana i ka helu o nā lua electron-hole e hōʻemi i ka ikaika hoʻokele o REDG i ka BPD i loko o ka substrate, no laila hiki i ka papa hoʻohui hui ke hoʻopau i ka bipolar degradation. Pono e hoʻomaopopo ʻia ʻo ka hoʻokomo ʻana i kahi papa e komo i nā kumukūʻai hou i ka hana ʻana i nā wafers, a me ka ʻole o ka hoʻokomo ʻana i kahi papa he mea paʻakikī ke hōʻemi i ka helu o nā lua electron-hole ma ka hoʻomalu wale ʻana i ka mana o ke ola o ka mea lawe. No laila, aia nō ka pono nui e hoʻomohala i nā ʻano hana hoʻopau ʻē aʻe e hoʻokō ai i kahi kaulike maikaʻi ma waena o ke kumukūʻai hana a me nā hua.
Ma muli o ka hoʻonui ʻia ʻana o ka BPD i ka 1SSF e koi ana i ka neʻe ʻana o nā dislocations hapa (PD), ʻo ka pine ʻana i ka PD he ala hoʻohiki ia e pale ai i ka hōʻino ʻana i ka bipolar. ʻOiai ua hōʻike ʻia ʻo PD pinning e nā haumia metala, aia nā FPD ma 4H-SiC substrates ma kahi mamao o 5 μm mai ka ʻili o ka papa epitaxial. Eia hou, no ka mea, li'ili'i loa ka coefficient diffusion o kekahi metala ma SiC, he pa'akikī no ka ho'ohehe'e 'ana i nā mea metala i loko o ka substrate34. Ma muli o ka nui o ka nui atomika o nā metala, paʻakikī hoʻi ka hoʻokomo ʻana i nā metala. I ka hoʻohālikelike ʻana, i ka hihia o ka hydrogen, hiki ke hoʻokomo ʻia ka mea māmā loa, nā ion (protons) i loko o 4H-SiC i kahi hohonu ʻoi aku ma mua o 10 µm me ka hoʻohana ʻana i ka accelerator papa MeV. No laila, inā pili ka proton implantation i ka PD pinning, a laila hiki ke hoʻohana ʻia e kāohi i ka hoʻolaha BPD i ka substrate. Eia nō naʻe, hiki i ka proton implantation ke hōʻino i ka 4H-SiC a me ka hopena i ka hoʻemi ʻana i ka hana o ka hāmeʻa37,38,39,40.
No ka lanakila ʻana i ka hōʻino ʻana o ka hāmeʻa ma muli o ka implantation proton, hoʻohana ʻia ka annealing kiʻekiʻe no ka hoʻoponopono ʻana i ka pōʻino, e like me ke ʻano annealing maʻamau i hoʻohana ʻia ma hope o ka hoʻokomo ʻana i ka ion i loko o ka hoʻoili ʻana i nā mea hana1, 40, 41, 42. Ua hōʻike ʻia ka hoʻoheheʻe ʻana o ka hydrogen ma muli o ka annealing kiʻekiʻe, ʻaʻole lawa ka mānoanoa o nā mana hydrogen kokoke i ka FD. e ʻike i ka pine ʻana o ka PR me ka hoʻohana ʻana iā SIMS. No laila, i loko o kēia haʻawina, ua hoʻokomo mākou i nā protons i loko o 4H-SiC epitaxial wafers ma mua o ke kaʻina hana hana, me ka annealing kiʻekiʻe. Ua hoʻohana mākou i nā diodes PiN ma ke ʻano he mea hana hoʻokolohua a hana iā lākou ma luna o nā wafers epitaxial 4H-SiC proton-implanted. A laila ʻike mākou i nā hiʻohiʻona volt-ampere e aʻo ai i ka hōʻino ʻana o ka hana ʻana o ka hāmeʻa ma muli o ka injection proton. Ma hope mai, ʻike mākou i ka hoʻonui ʻana o 1SSF i nā kiʻi electroluminescence (EL) ma hope o ka hoʻohana ʻana i kahi uila uila i ka PiN diode. ʻO ka mea hope loa, ua hōʻoia mākou i ka hopena o ka injection proton i ka hoʻopau ʻana i ka hoʻonui 1SSF.
Ma ka fig. Hōʻike ka Kiʻi 1 i nā hiʻohiʻona o kēia manawa-voltage (CVCs) o PiN diodes ma ka lumi wela ma nā wahi me ka implantation proton a me ka ʻole ma mua o ka pulsed current. Hōʻike nā diodes PiN me ka inikia proton i nā hiʻohiʻona hoʻoponopono e like me nā diodes me ka ʻole o ka inikia proton, ʻoiai ua kaʻana like nā ʻano IV ma waena o nā diodes. No ka hōʻike ʻana i ka ʻokoʻa ma waena o nā kūlana injection, ua hoʻolālā mākou i ke alapine uila ma kahi kikoʻī o mua o 2.5 A / cm2 (e like me 100 mA) ma ke ʻano he helu helu e like me ka hōʻike ʻana ma ka Figure 2. Ua hōʻike ʻia hoʻi ka pihi i hoʻohālikelike ʻia e ka mahele maʻamau. ma ka laina kiko. laina. E like me ka mea i ʻike ʻia mai nā piko o nā pihi, piʻi iki ka maʻi kūʻē ma nā ʻano proton o 1014 a me 1016 cm-2, ʻoiai ʻo ka PiN diode me kahi proton dose o 1012 cm-2 e hōʻike ana i nā ʻano like me ka ʻole o ka proton implantation. . Ua hana pū mākou i ka proton implantation ma hope o ka hana ʻana i nā diodes PiN ʻaʻole i hōʻike i ka electroluminescence like ʻole ma muli o ka pōʻino i hana ʻia e ka proton implantation e like me ka hōʻike ʻana ma ke Kiʻi S1 e like me ka mea i hōʻike ʻia ma nā haʻawina mua37,38,39. No laila, ʻo ka annealing ma 1600 ° C ma hope o ka hoʻokomo ʻana i nā Al ion he mea pono e hana i nā mea hana e hoʻāla ai i ka Al acceptor, hiki ke hoʻoponopono i ka pōʻino i hana ʻia e ka proton implantation, ka mea e hana like ai nā CVC ma waena o nā diodes proton PiN i hoʻokomo ʻole ʻia. . Hōʻike ʻia ke alapine o kēia manawa ma -5 V ma ke Kiʻi S2, ʻaʻohe ʻokoʻa koʻikoʻi ma waena o nā diodes me ka ʻole proton injection.
ʻO nā hiʻohiʻona Volt-ampere o nā diodes PiN me nā protons i hoʻokuʻu ʻia ma ka lumi wela. Hōʻike ka moʻolelo i ka nui o nā protons.
ʻO ke alapine Voltage i kēia manawa pololei 2.5 A/cm2 no nā diodes PiN me nā protons i hoʻopaʻa ʻia a i ʻole. Pili ka laina kiko i ka puunaue maʻamau.
Ma ka fig. Hōʻike ʻo 3 i kahi kiʻi EL o kahi diode PiN me ka nui o kēia manawa o 25 A/cm2 ma hope o ka uila. Ma mua o ka hoʻohana ʻana i ka ukana o kēia manawa pulsed, ʻaʻole i ʻike ʻia nā ʻāpana ʻeleʻele o ka diode, e like me ka hōʻike ʻana ma ke Kiʻi 3. C2. Eia naʻe, e like me ka mea i hōʻike ʻia ma ka fig. 3a, i loko o kahi diode PiN me ka hoʻokomo ʻole ʻia o ka proton, ua ʻike ʻia kekahi mau ʻāpana ʻeleʻele me nā ʻaoʻao māmā ma hope o ka hoʻohana ʻana i ka uila uila. ʻIke ʻia kēlā mau ʻāpana ʻeleʻele koʻokoʻo i nā kiʻi EL no 1SSF e hoʻonui ana mai ka BPD i ka substrate28,29. Akā, ua ʻike ʻia kekahi mau hewa hoʻopaʻa lōʻihi ma PiN diodes me nā protons i hoʻokomo ʻia, e like me ka hōʻike ʻana ma ka Fig. 3b-d. Me ka hoʻohana ʻana i ka topography X-ray, ua hōʻoia mākou i ka hiki ʻana mai o nā PR e hiki ke neʻe mai ka BPD a i ka substrate ma ka ʻaoʻao o nā mea pili i ka PiN diode me ka ʻole o ka proton injection (Fig. 4: kēia kiʻi me ka wehe ʻole ʻana i ka electrode luna (kiʻi kiʻi ʻia, PR). ʻAʻole ʻike ʻia ma lalo o nā electrodes). hōʻike ʻia ma nā Kiʻi 1 a me 2. Nā wikiō S3-S6 me nā wahi pōʻeleʻele lōʻihi ʻole (nā kiʻi EL manawa-varying o PiN diodes me ka ʻole o ka proton injection a i hoʻokomo ʻia ma 1014 cm-2) hōʻike pū ʻia i ka ʻIke Hoʻohui.
Nā kiʻi EL o nā diodes PiN ma 25 A/cm2 ma hope o 2 mau hola o ke koʻikoʻi uila (a) me ka hoʻokomo ʻole ʻia o ka proton a me nā kiʻi i hoʻokomo ʻia o (b) 1012 cm-2, (c) 1014 cm-2 a me (d) 1016 cm-2 protons .
Ua helu mākou i ka nui o ka 1SSF i hoʻonui ʻia ma ka helu ʻana i nā wahi ʻeleʻele me nā ʻaoʻao ʻālohilohi i ʻekolu PiN diodes no kēlā me kēia kūlana, e like me ka hōʻike ʻana ma ka Figure 5. Ke emi nei ka nui o ka 1SSF i hoʻonui ʻia me ka piʻi ʻana o ka nui proton, a hiki i ka nui o 1012 cm-2. ʻoi aku ka haʻahaʻa o ka nui o ka 1SSF i hoʻonui ʻia ma mua o kahi diode PiN i hoʻokomo ʻole ʻia.
Hoʻonui ʻia nā density o nā diodes SF PiN me ka hoʻokomo ʻole ʻana o ka proton ma hope o ka hoʻouka ʻana me kahi manawa pulsed (ʻo kēlā me kēia mokuʻāina he ʻekolu diodes i hoʻouka ʻia).
ʻO ka hoʻopōkole ʻana i ke ola o ka mea lawe e pili pū ana i ka hoʻonui ʻana i ka hoʻopau ʻana, a hoʻemi ka injection proton i ke ola o ka mea lawe32,36. Ua ʻike mākou i ke ola o ka mea lawe ma kahi papa epitaxial 60 µm mānoanoa me nā protons injected o 1014 cm-2. Mai ke ola lawe mua, ʻoiai ua hoʻemi ka implant i ka waiwai i ~10%, hoʻihoʻi ka annealing hope iā ~50%, e like me ka hōʻike ʻana ma Fig. S7. No laila, hoʻihoʻi ʻia ke ola o ka mea lawe, hoʻemi ʻia ma muli o ka proton implantation, e ka annealing kiʻekiʻe. ʻOiai he 50% ka emi ʻana o ke ola o ka mea lawe e hoʻopaʻa i ka hoʻolaha ʻana o ka hoʻopaʻa ʻana i nā hewa, ʻo nā hiʻohiʻona I-V, i hilinaʻi maʻamau i ke ola o ka mea lawe, hōʻike wale i nā ʻokoʻa liʻiliʻi ma waena o nā diodes injected a me non-implanted. No laila, ke manaʻoʻiʻo nei mākou he kuleana ko ka heleuma PD i ke kāohi ʻana i ka hoʻonui ʻana o 1SSF.
ʻOiaiʻaʻole iʻikeʻo SIMS i ka hydrogen ma hope o ka hoʻopiliʻana i ka 1600 ° C, e like me ka mea i hōʻikeʻia ma nā haʻawina mua, uaʻike mākou i ka hopena o ka proton implantation i ka hoʻopauʻana i ka hoʻonuiʻana o 1SSF, e like me ia i hōʻikeʻia ma nā kiʻi 1 a me 4. 3, 4. No laila, ke manaʻoʻiʻo nei mākou hoʻopaʻa ʻia ka PD e nā ʻātoma hydrogen me ka mānoanoa ma lalo o ka palena ʻike o SIMS (2 × 1016 cm-3) a i ʻole nā ​​kiko kiko i hoʻokomo ʻia e implantation. Pono e hoʻomaopopo ʻia ʻaʻole mākou i hōʻoia i ka piʻi ʻana o ke kūʻē o ka mokuʻāina ma muli o ka elongation o 1SSF ma hope o ka hoʻouka ʻana i kēia manawa. Ma muli paha o nā pilina ohmic maikaʻi ʻole i hana ʻia me kā mākou kaʻina hana, e hoʻopau ʻia i ka wā e hiki mai ana.
I ka hopena, ua hoʻomohala mākou i kahi ala hoʻopau no ka hoʻonui ʻana i ka BPD i 1SSF ma 4H-SiC PiN diodes me ka hoʻohana ʻana i ka proton implantation ma mua o ka hana ʻana i nā mea hana. ʻO ka emi ʻana o ka hiʻohiʻona I-V i ka wā o ka proton implantation he mea nui ʻole, ʻoi aku ka nui ma kahi proton dose o 1012 cm-2, akā nui ka hopena o ke kāohi ʻana i ka hoʻonui 1SSF. ʻOiai i loko o kēia noiʻi ua hana mākou i 10 µm mānoanoa PiN diodes me ka proton implantation i kahi hohonu o 10 µm, hiki nō ke hoʻonui hou i nā kūlana implantation a hoʻopili iā lākou e hana i nā ʻano mea like ʻole o 4H-SiC. Pono e noʻonoʻo ʻia nā kumukūʻai hou no ka hana ʻana i nā mea hana i ka wā o ka proton implantation, akā e like lākou me nā mea no ka implantation ion aluminika, ʻo ia ke kaʻina hana nui no nā mana mana 4H-SiC. No laila, ʻo ka hoʻokomo ʻana o ka proton ma mua o ka hoʻoili ʻana i nā mea hana he ala kūpono no ka hana ʻana i nā mana mana bipolar 4H-SiC me ka ʻole o ka degeneration.
Ua hoʻohana ʻia kahi wafer 4-ʻano n-type 4H-SiC me kahi mānoanoa epitaxial layer o 10 µm a me kahi hāʻina doping hāʻawi o 1 × 1016 cm-3 i hoʻohana ʻia ma ke ʻano he laʻana. Ma mua o ka hana ʻana i ka hāmeʻa, ua hoʻokomo ʻia nā ion H+ i loko o ka pā me ka ikehu wikiwiki o 0.95 MeV ma ka lumi wela a hiki i kahi hohonu o 10 μm ma kahi kihi maʻamau i ka ʻili o ka pā. I ka wā o ka proton implantation, ua hoʻohana ʻia kahi mask ma kahi pā, a he mau ʻāpana ka pā me ka ʻole o ka proton dose o 1012, 1014, a i ʻole 1016 cm-2. A laila, ua hoʻokomo ʻia nā Al ion me nā ʻāpana proton o 1020 a me 1017 cm–3 ma luna o ka wafer holoʻokoʻa i kahi hohonu o 0-0.2 µm a me 0.2–0.5 µm mai ka ʻili, a ukali ʻia e ka annealing ma 1600 ° C e hana i kahi pāpale kalapona i ʻano papa ap. -ʻano. Ma hope mai, waiho ʻia kahi ʻaoʻao hope Ni ma ka ʻaoʻao substrate, ʻoiai he 2.0 mm × 2.0 mm comb-shaped Ti / Al ʻaoʻao ʻaoʻao mua i hoʻokumu ʻia e photolithography a ua waiho ʻia kahi kaʻina peel ma ka ʻaoʻao papa epitaxial. ʻO ka hope, lawe ʻia ka hoʻopili hoʻopili ʻana ma kahi mahana o 700 °C. Ma hope o ka ʻoki ʻana i ka wafer i mau ʻāpana, hana mākou i ke ʻano koʻikoʻi a me ka noi.
Ua ʻike ʻia nā hiʻohiʻona I-V o nā diodes PiN i hana ʻia me ka HP4155B semiconductor parameter analyzer. Ma keʻano he koʻikoʻi uila, ua hoʻokomoʻia kahi 10-millisecond pulsed o 212.5 A / cm2 no nā hola 2 ma ke alapine o 10 pulses / sec. I ko mākou koho ʻana i kahi haʻahaʻa haʻahaʻa a i ʻole ka pinepine, ʻaʻole mākou i ʻike i ka hoʻonui ʻana o 1SSF i loko o kahi diode PiN me ka ʻole o ka proton injection. I ka wā o ka uila uila i hoʻohana ʻia, ʻo ka mahana o ka diode PiN ma kahi o 70 ° C me ka hoʻomehana ʻole ʻia, e like me ka hōʻike ʻana ma ke Kiʻi S8. Ua loaʻa nā kiʻi electroluminescent ma mua a ma hope o ke koʻikoʻi uila ma kahi ʻano nui o 25 A/cm2. Synchrotron reflect grazing incidence X-ray topography me ka monochromatic X-ray beam (λ = 0.15 nm) ma Aichi Synchrotron Radiation Center, ʻo ka ag vector ma BL8S2 he -1-128 a i ʻole 11-28 (e nānā i ka ref. 44 no nā kikoʻī) . ).
Hoʻopuka ʻia ka alapine voli ma kahi kikoʻī o mua o 2.5 A/cm2 me ka wā o 0.5 V i ka fig. 2 e like me ka CVC o kēlā me kēia mokuʻāina o ka PiN diode. Mai ke kumu waiwai o ka Vave koʻikoʻi a me ka deviation maʻamau σ o ke koʻikoʻi, hoʻolālā mākou i kahi ʻāpana puʻunaue maʻamau ma ke ʻano o kahi laina kiko ma ke Kiʻi 2 me ka hoʻohana ʻana i ka hoohalike:
Werner, MR & Fahrner, WR Nānā i nā mea waiwai, microsensors, ʻōnaehana a me nā mea hana no nā noi kiʻekiʻe-mehana a paʻakikī. Werner, MR & Fahrner, WR Nānā i nā mea waiwai, microsensors, ʻōnaehana a me nā mea hana no nā noi kiʻekiʻe-mehana a paʻakikī.Werner, MR a me Farner, WR Nānā i nā mea waiwai, microsensors, ʻōnaehana a me nā polokalamu no nā noi i ka wela kiʻekiʻe a me nā wahi paʻakikī. Werner, MR & Fahrner, WR 对用于高温和恶劣环境应用的材料、微传感器、系统和设备的评记。 Werner, MR & Fahrner, WR Nānā i nā mea waiwai, microsensors, ʻōnaehana a me nā mea hana no ka wela kiʻekiʻe a me nā noi kaiapuni.Werner, MR a me Farner, WR Nānā i nā mea waiwai, microsensors, ʻōnaehana a me nā polokalamu no nā noi i nā wela kiʻekiʻe a me nā kūlana paʻakikī.IEEE Trans. ʻOihana uila. 48, 249–257 (2001).
Kimoto, T. & Cooper, J. Kimoto, T. & Cooper, J.Kimoto, T. a me Cooper, JA Kumu o ka Silicon Carbide Technology Nā kumu kumu o ka Silicon Carbide Technology: Growth, Characteristics, Devices and Applications Vol. Kimoto, T. & Cooper, JA 碳化硅技术基础碳化硅技术基础:增长、表征、设备和应用卷。 Kimoto, T. & Cooper, JA Carbon化silicon technology base Carbon化silicon technology base: ulu, wehewehe, lako a me ka leo noi.Kimoto, T. a me Cooper, J. Kumu o Silicon Carbide Technology Nā kumu kumu o Silicon Carbide Technology: Growth, Characteristics, Equipment and Applications Vol.252 (Wiley Singapore Pte Ltd, 2014).
Veliadis, V. Ka Large Scale Commercialization of SiC: Kūlana Quo a me nā pilikia e lanakila ai. alma mater. ka ʻepekema. Forum 1062, 125–130 (2022).
Broughton, J., Smet, V., Tummala, RR & Joshi, YK Ka nānā ʻana i nā ʻenehana hoʻopili wela no nā uila uila kaʻa no nā kumu traction. Broughton, J., Smet, V., Tummala, RR & Joshi, YK Ka nānā ʻana i nā ʻenehana hoʻopili wela no nā uila uila kaʻa no nā kumu traction.Broughton, J., Smet, V., Tummala, RR a me Joshi, YK Ka nānā ʻana o nā ʻenehana hoʻopili wela no nā uila uila kaʻa no nā kumu traction. Broughton, J., Smet, V., Tummala, RR & Joshi, YK 用于牵引目的的汽车电力电子热封装技术的回顾。 Broughton, J., Smet, V., Tummala, RR & Joshi, YKBroughton, J., Smet, V., Tummala, RR a me Joshi, YK Nānā o ka ʻenehana hoʻopili wela no nā mea uila uila no nā kumu traction.J. Elekona. Pūʻolo. ka ʻike ʻana. ASME 140, 1-11 (2018).
Sato, K., Kato, H. & Fukushima, T. Hoʻomohala ʻana i ka ʻōnaehana hoʻokalakupua i hoʻohana ʻia ʻo SiC no nā kaʻaahi kiʻekiʻe Shinkansen e hiki mai ana. Sato, K., Kato, H. & Fukushima, T. Hoʻomohala ʻana i ka ʻōnaehana hoʻokalakupua i hoʻohana ʻia ʻo SiC no nā kaʻaahi kiʻekiʻe Shinkansen e hiki mai ana.ʻO Sato K., Kato H. a me Fukushima T. Hoʻomohala ʻana i kahi ʻōnaehana huki SiC i hoʻohana ʻia no nā kaʻaahi Shinkansen kiʻekiʻe e hiki mai ana.ʻO Sato K., Kato H. a me Fukushima T. Hoʻomohala Pūnaehana Traction no nā noi SiC no nā kaʻaahi Shinkansen kiʻekiʻe kiʻekiʻe e hiki mai ana. Pākuʻi IEEJ J. Ind. 9, 453–459 (2020).
Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. Nā ho'āʻo e hoʻokō pono i nā mana mana SiC: Mai ke kūlana o kēia manawa a me nā pilikia o nā wafers SiC. Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. Nā ho'āʻo e hoʻokō pono i nā mana mana SiC: Mai ke kūlana o kēia manawa a me nā pilikia o nā wafers SiC.Senzaki, J., Hayashi, S., Yonezawa, Y. a me Okumura, H. Nā pilikia i ka hoʻokōʻana i nā mana mana SiC hilinaʻi nui: e hoʻomaka ana mai ke kūlana o kēia manawa a me ka pilikia o ka wafer SiC. Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. 实现高可靠性SiC 功率器件的挑战:从SiC 晶圆的现状和问颜。 Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. ʻO ka luʻi o ka loaʻa ʻana o ka hilinaʻi kiʻekiʻe ma nā mea mana SiC: mai SiC 晶圆的电视和问题设计。ʻO Senzaki J, Hayashi S, Yonezawa Y. a me Okumura H. Nā pilikia i ka hoʻomohalaʻana i nā mana mana hilinaʻi kiʻekiʻe e pili ana i ka silicon carbide: kahi loiloi o ke kūlana a me nā pilikia e pili ana i nā wafers carbide silicon.Ma ka 2018 IEEE International Symposium on Reliability Physics (IRPS). (Senzaki, J. et al. eds.) 3B.3-1-3B.3-6 (IEEE, 2018).
Kim, D. & Sung, W. Ua ho'omaika'i 'ia ka pō'ino pōkole no 1.2kV 4H-SiC MOSFET me ka ho'ohana 'ana i ka pūnāwai P hohonu i ho'okō 'ia e ka ho'okomo 'ana. Kim, D. & Sung, W. Ua ho'omaika'i 'ia ka pō'ino pōkole no 1.2kV 4H-SiC MOSFET me ka ho'ohana 'ana i ka pūnāwai P hohonu i ho'okō 'ia e ka ho'okomo 'ana.ʻO Kim, D. a me Sung, V. Hoʻomaikaʻi i ka palekana pōkole pōkole no kahi 1.2 kV 4H-SiC MOSFET me ka hoʻohana ʻana i kahi P-well hohonu i hoʻokō ʻia e ka implantation channel. Kim, D. & Sung, W. 使用通过沟道注入实现的深P 阱提高了1.2kV 4H-SiC MOSFET 的短路耐用性。 Kim, D. & Sung, W. P 阱提高了1.2kV 4H-SiC MOSFETʻO Kim, D. a me Sung, V. Hoʻomaikaʻi i ka hoʻomanawanui pōkole o 1.2 kV 4H-SiC MOSFET me ka hoʻohana ʻana i nā pūnāwai P hohonu ma o ka hoʻokomo ʻana i ke kahawai.IEEE Electronic Device Lett. 42, 1822–1825 (2021).
Skowronski M. et al. Hoʻonui hou i ka neʻe ʻana o nā hemahema i nā diodes 4H-SiC pn mua. J. Noi. physics. 92, 4699–4704 (2002).
Ha, S., Mieszkowski, P., Skowronski, M. & Rowland, LB Dislocation hoʻololi i ka 4H silicon carbide epitaxy. Ha, S., Mieszkowski, P., Skowronski, M. & Rowland, LB Dislocation hoʻololi i ka 4H silicon carbide epitaxy.Ha S., Meszkowski P., Skowronski M. a me Rowland LB Dislocation hoʻololi i ka wā 4H silicon carbide epitaxy. Ha, S., Mieszkowski, P., Skowronski, M. & Rowland, LB 4H 碳化硅外延中的位错转换。 Ha, S., Mieszkowski, P., Skowronski, M. & Rowland, LB 4H Ha, S., Meszkowski, P., Skowronski, M. & Rowland, LBHoʻololi hoʻokaʻawale 4H i ka epitaxy carbide silika.J. Crystal. Ulu 244, 257–266 (2002).
Skowronski, M. & Ha, S. ʻO ka hoʻohaʻahaʻa ʻana i nā mea hana bipolar hexagonal silicon-carbide. Skowronski, M. & Ha, S. ʻO ka hoʻohaʻahaʻa ʻana i nā mea hana bipolar hexagonal silicon-carbide.ʻO Skowronski M. a me Ha S. ʻO ka hoʻohaʻahaʻa ʻana i nā mea bipolar hexagonal e pili ana i ka carbide silika. Skowronski, M. & Ha, S. 六方碳化硅基双极器件的降解。 Skowronski M. & Ha S.ʻO Skowronski M. a me Ha S. ʻO ka hoʻohaʻahaʻa ʻana i nā mea bipolar hexagonal e pili ana i ka carbide silika.J. Noi. physics 99, 011101 (2006).
Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H.Agarwal A., Fatima H., Heini S. a me Ryu S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H.Agarwal A., Fatima H., Heini S. a me Ryu S.-H.He hana hoʻohaʻahaʻa hou no nā MOSFET mana SiC kiʻekiʻe. IEEE Electronic Device Lett. 28, 587–589 (2007).
Caldwell, JD, Stahlbush, RE, Ancona, MG, Glembocki, OJ & Hobart, KD Ma ka ikaika hoʻokele no ka hoʻohui ʻana-i hoʻokomo ʻia i ka hewa hoʻoneʻe hewa ma 4H–SiC. Caldwell, JD, Stahlbush, RE, Ancona, MG, Glembocki, OJ & Hobart, KD Ma ka ikaika hoʻokele no ka hoʻohui ʻana-i hoʻokomo ʻia i ka hewa hoʻoneʻe hewa i 4H-SiC.ʻO Caldwell, JD, Stalbush, RE, Ancona, MG, Glemboki, OJ, a me Hobart, KD Ma ka ikaika hoʻokele o ka hoʻohui ʻana-i hoʻokomo ʻia i ka hana hewa i 4H-SiC. Caldwell, JD, Stahlbush, RE, Ancona, MG, Glembocki, OJ & Hobart, KD 关于4H-SiC 中复合引起的层错运动的驱动力。 Caldwell, JD, Stahlbush, RE, Ancona, MG, Glembocki, OJ & Hobart, KDʻO Caldwell, JD, Stalbush, RE, Ancona, MG, Glemboki, OJ, a me Hobart, KD, Ma ka ikaika hoʻokele o ka hoʻohui ʻana-i hoʻokomo ʻia i ka hoʻoneʻe hewa i 4H-SiC.J. Noi. physics. 108, 044503 (2010).
Iijima, A. & Kimoto, T. Elele ikehu kumu hoʻohālike no ka Shockley hoʻopaʻa hewa hoʻokumu i loko o 4H-SiC kristal. Iijima, A. & Kimoto, T. Elele ikehu kumu hoʻohālike no ka Shockley hoʻopaʻa hewa hoʻokumu i loko o 4H-SiC kristal.ʻO Iijima, A. a me Kimoto, T. Electron-energy model of formation of single defects of Shockley packing in 4H-SiC crystals. Iijima, A. & Kimoto, T. 4H-SiC 晶体中单Shockley 堆垛层错形成的电子能量模型。 Iijima, A. & Kimoto, T. Elele ikehu kŘkohu o hoʻokahi Shockley hoʻopaʻa hewa i loko o 4H-SiC kristal.Iijima, A. a me Kimoto, T. Electron-ike kumu hoʻohālike o ka hoʻokumu ʻana o kahi kīnā Shockley paʻi ʻana i nā kristal 4H-SiC.J. Noi. physics 126, 105703 (2019).
Iijima, A. & Kimoto, T. Ka manaʻo o ke kūlana koʻikoʻi no ka hoʻonui / ʻoki ʻana o nā hewa hoʻopaʻa ʻana Shockley hoʻokahi ma 4H-SiC PiN diodes. Iijima, A. & Kimoto, T. Ka manaʻo o ke kūlana koʻikoʻi no ka hoʻonui / ʻoki ʻana o nā hewa hoʻopaʻa ʻana Shockley hoʻokahi ma 4H-SiC PiN diodes.Iijima, A. a me Kimoto, T. Ka manaʻo o ke kūlana koʻikoʻi no ka hoʻonui ʻana / hoʻopaʻa ʻana i nā hemahema packing Shockley hoʻokahi ma 4H-SiC PiN-diodes. Iijima, A. & Kimoto, T. 估计4H-SiC PiN 二极管中单个Shockley 堆垛层错膨胀/收缩的临界条件。 Iijima, A. & Kimoto, T. Manaʻo o ka hoʻonui ʻia ʻana o ka papa hoʻopaʻa Shockley hoʻokahi / kūlana hoʻokaʻawale i nā diodes 4H-SiC PiN.ʻO Iijima, A. a me Kimoto, T. Ka manaʻo o nā kūlana koʻikoʻi no ka hoʻonui ʻana / hoʻopaʻa ʻana o ka hoʻopaʻa ʻana i kahi hemahema hoʻokahi Shockley ma 4H-SiC PiN-diodes.noiʻi physics Wright. 116, 092105 (2020).
Mannen, Y., Shimada, K., Asada, K. & Ohtani, N. Quantum well action model no ka hoʻokumu ʻana i kahi hewa hoʻopaʻa Shockley hoʻokahi i loko o kahi aniani 4H-SiC ma lalo o nā kūlana kaulike ʻole. Mannen, Y., Shimada, K., Asada, K. & Ohtani, N. Quantum well action model no ka hoʻokumu ʻana i kahi hewa hoʻopaʻa Shockley hoʻokahi i loko o kahi aniani 4H-SiC ma lalo o nā kūlana kaulike ʻole.Mannen Y., Shimada K., Asada K., a me Otani N. He kumu hoʻohālike quantum well no ka hoʻokumu ʻana i kahi hewa hoʻopaʻa Shockley hoʻokahi i loko o kahi aniani 4H-SiC ma lalo o nā kūlana nonequilibrium.Mannen Y., Shimada K., Asada K. a me Otani N. Quantum maikaʻi hoʻohālike kumu hoʻohālike no ka hoʻokumu ʻana i hoʻokahi Shockley hoʻopaʻa hewa i nā kristal 4H-SiC ma lalo o nā kūlana nonequilibrium. J. Noi. physics. 125, 085705 (2019).
Galeckas, A., Linnros, J. & Pirouz, P. Recombination-induced stacking faults: Hōʻike no ka hana maʻamau i ka hexagonal SiC. Galeckas, A., Linnros, J. & Pirouz, P. Recombination-induced stacking faults: Hōʻike no ka hana maʻamau i ka hexagonal SiC.Galeckas, A., Linnros, J. a me Pirouz, P. Recombination-Induced Packing Defects: Hōʻike no kahi Mechanism maʻamau i Hexagonal SiC. Galeckas, A., Linnros, J. & Pirouz, P. 复合诱导的堆垛层错:六方SiC 中一般机制的证据。 Galeckas, A., Linnros, J. & Pirouz, P. Hōʻike no ke ʻano maʻamau o ka papa hoʻopaʻa induction composite: 六方SiC.Galeckas, A., Linnros, J. a me Pirouz, P. Recombination-Induced Packing Defects: Hōʻike no kahi Mechanism maʻamau i Hexagonal SiC.physics Pastor Wright. 96, 025502 (2006).
Ishikawa, Y., Sudo, M., Yao, Y.-Z., Sugawara, Y. & Kato, M. Hoʻonui ʻia o kahi hewa hoʻopaʻa Shockley hoʻokahi i loko o kahi papa epitaxial 4H-SiC (11 2 ¯0) i hana ʻia e ka electron. kukui kukui.Ishikawa , Y. , M. Sudo , Y.-Z kukuna irradiation.Ishikawa, Y., Sudo M., Y.-Z Psychology.Pahu, Ю., М. Судо, Y.-Z Chem., J. Chem., 123, 225101 (2018).
Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. Ka nānā 'ana i ka ho'ohui hou 'ana o ka mea halihali i nā hewa ho'opa'a 'o Shockley ho'okahi a ma nā 'āpana 'āpana i 4H-SiC. Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. Ka nānā 'ana i ka ho'ohui hou 'ana o ka mea halihali i nā hewa ho'opa'a 'o Shockley ho'okahi a ma nā 'āpana 'āpana i 4H-SiC.Kato M., Katahira S., Itikawa Y., Harada S. a me Kimoto T. Nānā i ka hoʻohui hou ʻana o ka mea lawe lawe i nā hemahema hoʻokahi Shockley Pack a me nā ʻāpana ʻāpana i 4H-SiC. Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. 单Shockley 堆垛层错和4H-SiC 部分位错中载流子复合的观察。 Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. 单Shockley stacking stacking和4H-SiC partial 位错中载流子去生的可以。Kato M., Katahira S., Itikawa Y., Harada S. a me Kimoto T. Nānā i ka hoʻohui hou ʻana o ka mea lawe lawe i nā hemahema hoʻokahi Shockley Pack a me nā ʻāpana ʻāpana i 4H-SiC.J. Noi. physics 124, 095702 (2018).
Kimoto, T. & Watanabe, H. Defect engineering in SiC technology for high-voltage power devices. Kimoto, T. & Watanabe, H. Defect engineering in SiC technology for high-voltage power devices.Kimoto, T. a me Watanabe, H. Hoʻomohala ʻana i nā hemahema i ka ʻenehana SiC no nā mea mana kiʻekiʻe. Kimoto, T. & Watanabe, H. 用于高压功率器件的SiC 技术中的缺陷工程。 Kimoto, T. & Watanabe, H. Defect engineering in SiC technology for high-voltage power devices.Kimoto, T. a me Watanabe, H. Hoʻomohala ʻana i nā hemahema i ka ʻenehana SiC no nā mea mana kiʻekiʻe.palapala noi physics Express 13, 120101 (2020).
Zhang, Z. & Sudarshan, TS Basal plane dislocation-free epitaxy of silicon carbide. Zhang, Z. & Sudarshan, TS Basal plane dislocation-free epitaxy of silicon carbide.Zhang Z. a me Sudarshan TS Dislocation-free epitaxy o ka silikon carbide i loko o ka mokulele basal. Zhang, Z. & Sudarshan, TS 碳化硅基面无位错外延。 Zhang, Z. & Sudarshan, TSZhang Z. a me Sudarshan TS Dislocation-free epitaxy o nā mokulele basal silicon carbide.ʻōlelo. physics. Wright. 87, 151913 (2005).
Zhang, Z., Moulton, E. & Sudarshan, TS Mechanism o ka hoʻopau ʻana i nā dislocations basal plane i nā kiʻi ʻoniʻoni ʻoniʻoni SiC e ka epitaxy ma kahi substrate etched. Zhang, Z., Moulton, E. & Sudarshan, TS Mechanism o ka hoʻopau ʻana i nā dislocations basal plane i nā kiʻi ʻoniʻoni ʻoniʻoni SiC e ka epitaxy ma kahi substrate etched.ʻO Zhang Z., Moulton E. a me Sudarshan TS Mechanism o ka hoʻopau ʻana i nā dislocations base plane i nā kiʻi ʻoniʻoni ʻoniʻoni SiC e ka epitaxy ma kahi substrate etched. Zhang, Z., Moulton, E. & Sudarshan, TS 通过在蚀刻衬底上外延消除SiC 薄膜中基面位错的机制。 Zhang, Z., Moulton, E. & Sudarshan, TS ʻO ke ʻano o ka hoʻopau ʻana i ke kiʻi ʻoniʻoni ʻoniʻoni SiC ma ke kālai ʻana i ka substrate.ʻO Zhang Z., Moulton E. a me Sudarshan TS Mechanism o ka hoʻopau ʻana i nā dislocations base plane i nā kiʻi ʻoniʻoni ʻoniʻoni SiC e ka epitaxy ma nā substrates etched.noiʻi physics Wright. 89, 081910 (2006).
Shtalbush RE et al. Hoʻopau ka ulu ʻana i ka emi ʻana o nā dislocations basal plane i ka wā 4H-SiC epitaxy. ʻōlelo. physics. Wright. 94, 041916 (2009).
Zhang, X. & Tsuchida, H. Ka hoʻololi ʻana i nā dislocations basal plane i nā dislocations lihi wili i nā epilayers 4H-SiC e ka annealing kiʻekiʻe. Zhang, X. & Tsuchida, H. Ka hoʻololi ʻana i nā dislocations basal plane i nā dislocations lihi wili i nā epilayers 4H-SiC e ka annealing kiʻekiʻe.Zhang, X. a me Tsuchida, H. Ka hoʻololi ʻana o nā haʻalele ʻana o ka mokulele basal i nā hiʻohiʻona wili wili i nā ʻāpana epitaxial 4H-SiC e ka annealing kiʻekiʻe. Zhang, X. & Tsuchida, H. 通过高温退火将4H-SiC 外延层中的基面位错转化为螺纹刃位错。 Zhang, X. & Tsuchida, H. 通过高温退火将4H-SiCZhang, X. a me Tsuchida, H. Ka hoʻololi ʻana o ka hoʻoheheʻe ʻana o ka mokulele kumu i nā dislocations lihi filament ma nā papa epitaxial 4H-SiC e ka annealing wela kiʻekiʻe.J. Noi. physics. 111, 123512 (2012).
Song, H. & Sudarshan, TS Basal plane dislocation conversion near the epilayer/substrate interface in epitaxial growth of 4° off-axis 4H–SiC. Song, H. & Sudarshan, TS Basal plane dislocation conversion near the epilayer/substrate interface in epitaxial growth of 4° off-axis 4H–SiC.Mele, H. a me Sudarshan, TS Ka hoʻololi ʻana o nā haʻalele ʻana o ka mokulele basal kokoke i ka papa epitaxial / substrate interface i ka wā e ulu ai ka epitaxial off-axis o 4H-SiC. Song, H. & Sudarshan, TS 在4° 离轴4H-SiC 外延生长中外延层/衬底界面附近的基底平面位错转捯。 Mele, H. & Sudarshan, TS 在4° 离轴4H-SiC Mele, H. & Sudarshan, TSHoʻololi dislocation planar o ka substrate kokoke i ka epitaxial layer / substrate palena i ka wā epitaxial ulu o 4H-SiC ma waho o ka axis 4 °.J. Crystal. Ulu 371, 94–101 (2013).
Konishi, K. et al. I kēia manawa kiʻekiʻe, hoʻololi ka hoʻolaha ʻana o ka dislocation dislocation base i ka 4H-SiC epitaxial layers i nā dislocations lihi filament. J. Noi. physics. 114, 014504 (2013).
Konishi, K. et al. E hoʻolālā i nā papa epitaxial no nā SiC MOSFET hiki ʻole ke hoʻohaʻahaʻa i ka bipolar ma ka ʻike ʻana i nā wahi nucleation hoʻopaʻa hoʻopaʻa paʻa i ka hoʻopaʻa ʻia ʻana o ka topographic X-ray. AIP Advanced 12, 035310 (2022).
Lin, S. et al. ʻO ka hopena o ka hoʻokaʻawale ʻana o ka mokulele basal ma ka hoʻolaha ʻana o kahi hewa hoʻopaʻa ʻano Shockley hoʻokahi i ka wā o ka pohō i kēia manawa o 4H-SiC pin diodes. Iapana. J. Noi. physics. 57, 04FR07 (2018).
Tahara, T., et al. Hoʻohana ʻia ke ola o ka mea lawe liʻiliʻi liʻiliʻi i nā epilayers 4H-SiC waiwai nui i ka nitrogen e kāohi i nā hewa hoʻopaʻa ʻana i nā diodes PiN. J. Noi. physics. 120, 115101 (2016).
Tahara, T. et al. Hoʻopili ʻia ka hilinaʻi ʻana o ka mea lawe pahu hoʻokahi o Shockley hoʻopaʻa hewa hoʻokahi ma 4H-SiC PiN diodes. J. Noi. Physics 123, 025707 (2018).
Mae, S., Tawara, T., Tsuchida, H. & Kato, M. Pūnaehana Microscopic FCA no ke ana o ke ola o ka mea lawe hohonu i ho'oholo 'ia ma SiC. Mae, S., Tawara, T., Tsuchida, H. & Kato, M. Pūnaehana Microscopic FCA no ke ana o ke ola o ka mea lawe hohonu i ho'oholo 'ia ma SiC.Mei, S., Tawara, T., Tsuchida, H. a me Kato, M. FCA Pūnaehana Microscopic no nā ana o ke ola holoʻokoʻa i hoʻoholo ʻia i loko o Silicon Carbide. Mae, S.、Tawara, T.、Tsuchida, H. & Kato, M. 用于SiC 中深度分辨载流子寿命测量的显微FCA 系统。 Mae, S.、Tawara, T.、Tsuchida, H. & Kato, M. No ka SiC hohonu-hohonu.Mei S., Tawara T., Tsuchida H. a me Kato M. Pūnaehana Micro-FCA no nā ana o ke ola o ka mea halihali i ho'oholo hohonu i loko o ka carbide silicon.ʻĀpana ʻepekema alma mater 924, 269–272 (2018).
Hirayama, T. et al. Ua ana ʻia ka hohonu o ke ola o ka mea lawe i nā papa epitaxial mānoanoa 4H-SiC me ka hoʻohana ʻole ʻana i ka hoʻonā manawa o ka absorption lawe manuahi a me ke kukui uila. E hoʻololi i ka ʻepekema. mika. 91, 123902 (2020).


Ka manawa hoʻouna: Nov-06-2022